$$y^{2} + 13y + 36 = y^{2} - 12y + 36$$

$$y^{2} - y^{2} + 13y + 12y + 36 - 36 = 0$$

$$25y = 0$$

$$\Rightarrow y = 0 \text{ in } x^{2} + x^{2} + y, \text{ we get}$$

$$x^{2} + 3x = y$$

$$x^{2} + 3x = 0$$

$$x^{2} + 3x = 0$$

$$x(x + 3) = 0$$
Either $x = 0$ or $x + 3 = 0$

Thus, solution set = $\{-3, 0\}$

SOLVED MISCELLANEOUS EXERCISE - 1

Q1. Multiple Choice Questions:

Four possible answers are given for the following questions. Tick (✓) the correct answer.

(i) Standard form of quadratic equation is:

(a)
$$bx + c = 0$$
, $b \neq 0$

(b)
$$ax^2 + bx + c = 0$$
, $a \ne 0$

(c)
$$ax^2 = bx, a \neq 0$$

(d)
$$ax^2 = 0$$
, $a \ne 0$

(ii) The number of terms in a standard quadratic equation $ax^2 + bx + c = 0$ is

$$(d)$$
 4

(iii) The number of methods to solve a quadrate equation is:

(iv) The quadratic formula is:

(a)
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
(c)
$$\frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

(b)
$$\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$
(d)
$$\frac{b \pm \sqrt{b^2 + 4ac}}{2a}$$

$$(d) \frac{b \pm \sqrt{b^2 + 4ac}}{2a}$$

(v) Two linear factors of x2 - 15x + 56 are:

(a)
$$(x-7)$$
 and $(x+8)$

(b)
$$\{x + 7\}$$
 and $(x - 8)$

(c)
$$(x-7)$$
 and $(x-8)$

(d)
$$(x + 7)$$
 and $(x + 8)$

(vi) An equation, which remains unchanged when x is replaced by $\frac{1}{x}$ is called a/an

(a) Exponential equation

(b) Reciprocal equation

(c) Radical equation

(d) None of these

(vii) An equation 6fthetype $3^{1} + 3^{1} + 6 = 0$ is a/an:

(a) Exponential equation

(b) Radical equation

(c) Reciprocal equation

- (d) None of these
- (viii) The solution set of equation $4x^2 16 = 0$ is:
 - (a) $\{\pm 4\}$
- (b) {4}
- (c) $\{\pm 2\}$
- $(d) \pm 2$
- (ix) An equation of the form $2x^2 3x^3 + 7x^2 3x + 2 = 0$ is called a/ar
 - (a) Reciprocal equation

(b) Radical equation

(c) Exponential equation

(d) None of these

Answers:

(i)	b	(ii)	С	(iii)	С	(iv)	a	(v)	С
(vi)	Ь	(vii)	a	(viii)	С	(ix)	a		

- Q2. Write short answers of the following questions. .
 - (i) Solve $x^2 + 2x 2 = 0$

Ans:

$$x^{2} + 2x - 2 = 0$$
Compare it with
$$ax^{2} + bx + c = 0$$

Here
$$a = 2$$
, $b = 2$, $c = 2$

By using quadratic equation, we get

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4(2)(-2)}}{2(2)}$$

$$x = \frac{-2 \pm \sqrt{4 + 16}}{4}$$

$$x = \frac{-2 \pm \sqrt{20}}{4} = \frac{-2 \pm 2\sqrt{5}}{4}$$

$$x = \frac{2(-1 \pm \sqrt{5})}{4} = -1 \pm \sqrt{5}$$

Thus, the solution set = $\{-1 \pm \sqrt{5}\}$

(ii) Solve by factorization $5x^2 = 15x$

Ans:

$$5x^{2} = 15x$$

 $5x^{2} - 15x = 0$
 $5x(x - 3) = 0$
Either $5x = 0$ or $x - 3 = 0$
 $\Rightarrow x = 0$ $x = 0$

Thus, the solution set = $\{0, 3\}$

(iii) Write in standard form
$$\frac{1}{x+4} + \frac{1}{x-4} = 3$$

Ans:

$$\frac{1}{x+4} + \frac{1}{x-4} - 3 \Rightarrow \frac{x-4+x+4}{(x+4)(x-4)} = 3$$

$$\frac{2x}{x^2 - 16} = 3 \Rightarrow 3(x^2 - 16) = 2x$$

$$3x^2 - 48 - 2x = 0$$

$$3x^2 - 2x - 48 = 0$$

(iv) Write the names of the methods for solving a quadratic equation.

Ans: Solution of quadratic equations:

To find solution set of a quadratic equation, following methods are used:

(i) Factorization

(ii) Completing square

(v) Solve
$$\left(2x - \frac{1}{2}\right)^2 = \frac{9}{4}$$

Ans:

$$\left(2x-\frac{1}{2}\right)^2=\frac{9}{4}$$

Taking square root on both sides, we get

$$2x - \frac{1}{2} = \pm \frac{3}{2}$$

$$2x = \frac{1}{2} \pm \frac{3}{2}$$
Either
$$2x = \frac{1}{2} + \frac{3}{2} \quad \text{or} \quad 2x = \frac{1}{2} - \frac{3}{2}$$

$$2x = 2 \quad 2x = -1$$

$$\Rightarrow \quad x = 1 \quad x = -\frac{1}{2}$$

Thus, the solution set= $\left\{-\frac{1}{2},1\right\}$

(vi) Solve
$$\sqrt{3x+18} = x$$

Ans:

$$\sqrt{3x+18}=x$$

Taking square on both sides, we get

$$3x + 18 = x^2$$

$$x^2 - 3x - 18 = 0$$

$$x^2 - 6x + 3x - 18 = 0$$

 $x(x-6) + 3(x-6) = 0$
 $(x-6)(x+3) = 0$
Either $x-6=0$ or $x+3=0$
 $x=6$

Thus, the solution set = $\{-3, 6\}$

(vii) Define quadratic equation.

Ans: Quadratic Equation:

An equation, which contains the square of the unknown (variable) quantity, but no higher power, is called a quadratic equation or an equation of the second degree.

(viii) Define exponential equation.

Ans: Exponential equations:

In exponential equations, variable occurs in exponent.

For example, $5^{1-x} + 5 x^{1-x} = 26$.

(ix) Define reciprocal equation.

Ans: Reciprocal equations of the type:

$$a\left(x^2 + \frac{1}{x^2}\right) + b\left(x + \frac{1}{x}\right) = c = 0 \text{ or } ax^4 + bx^3 + cx^2 + bx + a = 0$$

An equation is said to be a reciprocal equation, if it remains unchanged, when x is replaced by $\frac{1}{2}$.

Replacing x by $\frac{1}{x}$ in $ax^4 - bx^3 + cx^2$ bx + a = 0, we have

$$a\left(\frac{1}{x}\right)^4 - b\left(\frac{1}{x}\right)^3 + c\left(\frac{1}{x}\right)^2 - b\left(\frac{1}{x}\right) + a = 0 \text{ which is simplified as}$$

 $a - bx + cx^2 - by^3 + ax^4 = 0$. We get the same equation. Thus $ax^4 - bx^3 + cx^2 - bx + a = 0$ is a reciprocal equation.

(x) Define radical equation.

Ans: Radical equations:

An equation involving expression under the radical sign is called a radical equation.

e.g.,
$$\sqrt{x+3} = x + 1$$
 and $\sqrt{x-1} = \sqrt{x-2} + 1$

O3. Fill in the blanks:

- (i) The standard form of the quadratic equation is
- (ii) The number of methods to solve a quadratic equation are______.
- (iii) The name of the method to derive a quadratic formula is______
- (iv) The solution of the equation $ax^2 + bx + c = 0$, $a \ne 0$ is _____.
- (v) The solution set of $25x^2 1 = 0$ is _____.

- (vi) An equation of the form $2^{2x} 3.2^x + 5 = 0$ is called a/an equation.
- (vii) The solution set of the equation $x^2 9 = 0$ is _____.
- (viii) An equation of the type $x^4 + x^3 + x^2 + x + 1 = 0$ called a/an
- (ix) A root of an equation, which do not satisfy the equation is called _____ root.
- (x) An equation involving impression of the variable under_____ is called radical.

Answer

(i)	$ax^2+bx+c=0$	(ii)	3	(iii)	Completing Square
(iv)	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	(v)	$\left\{\pm\frac{1}{5}\right\}$	(vi)	Exponential
(vii)	{ ± 3}	(viii)	Reciprocal	(ix)	Extraneous
(x)	Radical sign				

SUMMARY

- An equation which contains the square of the unknown (variable) quantity, but no higher power, is called a quadratic equation or an equation of the second degree.
- ✓ A second degree equation in one variable x, $ax^2 + bx + c = 0$
- Where a ≠ 0 and a, b, care real numbers, is called the general or standard form of a quadratic equation.
- An equation is said to be a reciprocal equation, if it remains unchanged, when x is replaced by $\frac{1}{x}$.
- ✓ In exponential equations, variables occur in exponents.
- An equation involving expression under the radical sign is called a radical equation.
- Quadratic formula for $ox^2 + bx + c = 0$, $a \ne 0$ is $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Any quadratic equation is solved by the following three methods.
 - (i) Factorization (ii) Completing square (iii) Quadratic formula

00000000000