Statements	Reasons
Since ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. Place the circle ABCD on the circle A'B'C'D' So that point O falls on O' Also m \(\times AOC = m \times A'O'C' \) m \(\times A = m \times O'A' \) and m \(\times C = in \times O'C' \) So point A will coincide with A' and point C will Coincide with C'	Given Given Radii for congruent circles Radii for congruent circles Using (i), (ii) and (iil)
Now every point on ADC or on A'D'C' is equidistant from the centres O and O' respectively. Hence \widehat{ADC} coincides with $\widehat{A'D'C'}$. or $\widehat{mAC} = \widehat{mA'C'}$ i.e., $\widehat{m(\widehat{ADC})} = \widehat{m(\widehat{A'D'C'})}$	Using theorem 1

SOLVED EXERCISE 11.1

In a circle two equal chords AB and CD intersect each other.
 Prove that mAD = mBC.

Solution:

Given:

In a circle having centre at O.

$$m\overrightarrow{OB} \cong m\overrightarrow{CD}$$

To prove:

$$m\overline{AD} = m\overline{BC}$$

Construction:

Join A to C, A to B, A to D and B to C.

ŏ

(c)

SOLVED MISCELLANEOUS EXERCISE - 11

1.	Multiple Choice Questions Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.									
(i)	A 4 cm long chord is:	sub stand	ls a centr	al angle	of 60°. T	he ra	dial s	egment t	his circle	•
	(a) 1	(b) I		(c) 3		(d)	4			
(ii)	The length of a cho angle made by the	chord wil	l be:					ruent, th	e central	
····	(a) 30°	(h) 45°		(c) 60		•	75°			
(m)	Out of two congrue the other are will se	ubtend th	e central	angle of	:			angle of	30° then	
<i>.</i> • .	(a) 15°	(b) 30°		(c) 4:			60°			
(iv)	An arc subtends a central angle of:	central ai	igle of 40	° then t	he corres	spondi	ing cl	hord will	subtend	
	(a) 26°	(b) 40°		(c) 6()°	(d)	8.0°			
(v)	A pair of chords of (a) congruent		ubtending ongruent	-	**					
(vi)	If an area of a circle of the area will make				of 60°, th	en the	e cori	respondi	ng chord	
	(a) 20°	(b) 40°	•	(c) 60)°	(d)	80°			
(vii)	The semi circumfer of:	ence and	the diam	eter of a	circle b	oth si	ubten	d a centi	ral angle	
	(a) 90°	(b) 180°	•	(c) 27	0°	(d)	360°			
(viii)	The chord length of (a) less than radial so (c) double of the rad	egment		(b) eq	ral angle ual to the one of the	e radia			•	
(ix)	If a chord of a circl and the radial segm	e subtend ent are:	ls, a centr	al angle	of 60°, (then t	he lei	ngth of th	ne chord	
	(a) congruent	(b) inco	ngruent	(c) pa	rallel	(d)	perpe	ndicular		
11.0	The arcs opposite to (a) congruent	incongru (b) inco	ient centr ngruent	al angle (c) pa	s of a cir rallel	rcle ar (d)	c alw perpe	ays: indicular		
Answ					7.4.	 -	<u></u>	(-1)	r	ר
ij <u>. </u>	<u>d</u> (ii)	<u> </u>	(iii)	<u> </u>	(iv)		ba	(v) (x)	a	+
vil	d (vii)	d	(viii)	U	. (ix)		<u> </u>	7.77		.1

SUMMARY

- The boundary traced by a moving point in a circle is called its circumference whereas any portion of the circumference will be known as an arc of the circle.
- The straight, line joining any two points of the circumference is called a chord of the circle.
- The portion of a circle bounded by an arc and a chord is known as the segment of a circle.
- ✓ The circular region bounded by an arc of a circle and its two corresponding radial segments is called a sector of the circle.
- A straight Sine, drawn from the centre of a circle bisecting a chord is perpendicular to the chord and conversely perpendicular drawn from the centre of a circle on a chord, bisects it.
- If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are equal.
- ✓ If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- ✓ Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

00000000000

		arcs.
So	$\overline{mAQ} = \overline{mAP}$	Sides opposite to equal angles in ΔAPQ.
or	$\overline{mAP} = \overline{mAQ}$	

Example 2:

ΔBCD is a quadrilateral circumscribed about a circle Show that

$$m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$$

Given:

ΔBCD is a quadrilateral circumscribed about a circle with centre O. So that each side becomes tangent to the circle.

To prove:

$$m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$$

Construction:

Drawn $\overrightarrow{OE} \perp \overrightarrow{AB}$, $\overrightarrow{OF} \perp \overrightarrow{BC}$, $\overrightarrow{OG} \perp \overrightarrow{CD}$ and $\overrightarrow{OH} \perp \overrightarrow{DA}$

Proof.

Statements	Reasons
mAE = mHA; mEB = mBF(i) mCG = mFC and mGD = mDH(ii)	Since tangents drawn from a point to the circle are equal in length
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD})$	Adding (i) & (ii)
$= (m\overline{BF} + m\overline{FC}) + (m\overline{DH} + m\overline{HA})$	
or $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$	

SOLVED EXERCISE 12.1

Prove that in a given cyclic quadrilateral, sum of opposite angles is two
right angles and conversely.

Solution:

Given:

A quadrilateral ABCD.