		arcs.
So	$\overline{mAQ} = \overline{mAP}$	Sides opposite to equal angles in ΔAPQ.
or	$\overline{mAP} = \overline{mAQ}$	

Example 2:

ΔBCD is a quadrilateral circumscribed about a circle Show that

$$m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$$

Given:

ΔBCD is a quadrilateral circumscribed about a circle with centre O. So that each side becomes tangent to the circle.

To prove:

$$m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$$

Construction:

Drawn $\overrightarrow{OE} \perp \overrightarrow{AB}$, $\overrightarrow{OF} \perp \overrightarrow{BC}$, $\overrightarrow{OG} \perp \overrightarrow{CD}$ and $\overrightarrow{OH} \perp \overrightarrow{DA}$

Proof.

Statements	Reasons
mAE = mHA; mEB = mBF(i) mCG = mFC and mGD = mDH(ii)	Since tangents drawn from a point to the circle are equal in length
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD})$	Adding (i) & (ii)
$= (m\overline{BF} + m\overline{FC}) + (m\overline{DH} + m\overline{HA})$	
or $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$	

SOLVED EXERCISE 12.1

Prove that in a given cyclic quadrilateral, sum of opposite angles is two
right angles and conversely.

Solution:

Given:

A quadrilateral ABCD.

In scribed in a circle whose centre is O.

To Prove:

$$\angle A + \angle C = 2n \angle S$$
.

And
$$\angle B + \angle D = 2rt \angle 2$$
.

Construction:

Join AO and OC

Proof:

Arc ABC subtends ZAOC at the centre O and.

∠ ADC at a point D on the remaining part of the circumference.

$$m\angle ADC = \frac{1}{2} \angle AOC$$
(i)

Similarly, arc ADC subtends reflex $\angle AOC$ at the centre and $\angle ABC$ on the circumferences.

$$m\angle ABC = \frac{1}{2} \angle AOC$$
(ii)

By Adding (i) & (ii)

$$m\angle ADC + m\angle ABC = \frac{1}{2} \{m\angle AOC + m\angle AOC\}$$

$$m\angle D + m\angle B \frac{1}{2} [4rt \angle 5]$$

 $m\angle ADC + m 4B = 2rt \angle S$. Proved.

Similarly, by Join BO and OD it can be proved that.

Converse:

If the opposite angles of a quadrilateral are supplementary, it vertigos are cycle.

Given:

A quadrilateral ABCD such that

$$\angle A + \angle C = 2\pi$$
. $\angle S$

and
$$\angle B + \angle D = 2rt. \angle S$$

To Prove:

Points A. B, C, D are cyclic.

Construction:

Draw a circle to pass through the points A, B, C. If it does not pass through D, Suppose it cuts AD or AD produced at E (as in fig i & ii).

Proof:

Now ABCE is a cyclic quadrilateral. $\angle ABC + \angle CEA = 2\pi t$. $\angle S$.

But $\angle ABC + \angle CDA = 2rt. \angle S$. (ii) (given)

:. \(\alpha \text{BC} + \(\alpha \text{CEA} = \(\alpha \text{BC} + \(\alpha \text{CDA} \). Add (i) & (ii).

⇒ ∠CEA = ∠CDA.

i.e. an ext. angle of \triangle CDE is equal to its int. Opp. angle, which is impossible in less. E coincides with D.

the cycle which passes through A,B,D must pass through D,

2. Show that parallelogram inscribed in a circle will be a rectangle.

Solution:

Given:

ABCD is a parallelogram.

Top Prove:

ABCD is a rectangle.

Proof

 $m \angle 1 + m \angle 3 = 180^{\circ}$ (i)

[cyclic quadrilateral] But $m\angle 1 + m\angle 3 = 180^{\circ}$ (ii)

[opp. ∠sof a l l grm)

From (i) & (ii) we get

2m∠11 = 180°

⇒ m∠l = 90°

∴ m∠ = m∠3 = 90°.

By this

 $m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$.

Hence, the 11grm ABCD is a rectangle.

3. AOB and COD are two intersecting chords of a circle. Show that Δ^{4} AOD and BOC are equiangular.

Solution:

Given:

Two chords AOB & COD Intersecting each other at O.

To Prove:

 Δ ' AOD and Δ COD are equiangular.

Proof:

ΔAOB and ΔCOB

 $\angle 1 = \angle 2$.

 $\angle 3 = \angle 4$

[angles in the same segment of a circle].

 $\therefore \angle AOB = \angle COB.$

(Vertical angles).

.. AAOD and A COD are equiangular triangles.

4. \overline{AD} , and \overline{BC} are two parallel chords of a circle prove that are $\overline{AB} \cong \operatorname{arc}$ \overline{CD} and $\operatorname{arc} \overline{AC}$ s arc \overline{BD} .

Solution:

Given:

Tow circles, C(O, r) and C(P, r) chord AB = chord CD.

To Prove:

$$\widehat{AB} = \widehat{CD}$$

Construction:

Join OA, OB and PC, PD.

Proof:

In △ AOB & △ CPD

OA ≅ PC

and OB ≅ PD [ralii of equal circles]

AB = CD [given].

∴ $\triangle AOB \cong \triangle CPD$ S.S.S.

∴ ∠AOB ≅ ∠CPD.

There are the angles subtended by the AB and CD at the centre of equal circle

$$\widehat{AB} = \widehat{CD}$$