S. T and U respectively.

6. Thus PQRSTU is the circumscribed regular hexagon.

Inscribe a regular hexagon in a given circle.

Given:

A circle, with centre at O.

Steps of Construction:

1. Take any point A on the circle and point with O.

2. From point A, draw an arc of radius AO which intersects the circle at point is and i.

3. Join (O and A with points B and F.

4. $\triangle OAB$ and $\triangle OAF$ are equilateral therefore $\angle AOB$ and $\angle AOF$ are of measure 60° i.e., $m |\overline{AO}| = m |\overline{AB}| = m |\overline{AF}|$.

5. Produce \overline{FO} to meet the circle at C. Join B to C. Since in $\angle BOC = 60^\circ$ therefore $\overline{BC} = \overline{mOA}$.

6. From C and F. draw arcs of radius OA, which intersect the circle at points D and E.

7. Join C to D. D to E and E' to F ultimately. We have

$$m\overline{OA} = m\overline{OB} = m\overline{OC} = m\overline{OD} = m\overline{OE} = m\overline{OF}$$

Thus the figure ABCDEF is a regular hexagon inscribed in the circle.

SOLVED EXERCISE 13.2

1. Circumscribe a circle about a triangle ABC with sides

$$|\overline{AB}| = 6 \text{ cm}$$
, $|\overline{BC}| = 3 \text{ cm}$, $|\overline{CA}| = 4 \text{ cm}$

Also measure its circum radius.

Solution:

Given:

Three sides

$$|AB| = 6cm$$
, $|BC| = 3cm$, $|CA| = 4cm$.

Required:

To construct a circumscribed circle about a triangle using given informations.

Steps of Construction:

- 1. Draw a line segment |AB| = 6cm
- 2. With centre at A, draw an arc of radius 4cm.
- 3. With centre at B, draw an arc of radius 3cm which cuts the previous are at point C.
- 4. Join C with A and B.
- 5. Thus ABC is the required triangle.
- 6. Draw LMN as perpendicular bisector of side AB.
- 7. Draw PQR as perpendicular bisector of side BC.
- 8. LN and PR intersect at point O.
- 9. With centre O and radius in $\overline{OA} = \overline{OB} = m\overline{OC}$, draw a circle.
- 10. This circle will pass through A. B and C where as O is circum center of the circumscribed circle

Here m \overline{OA} = m \overline{OB} = m \overline{OC} = 3.3 cm.

Inscribe a circle in a triangle ABC with sides.
 |AB| = 5 cm, |BC| = 3 era, |CA| = 3 cm. Also measure its in-radius.

Solution:

Given:

Three sides |AB| = 6cm. |BC| = 3cm. |CA| = 4cm.

Required:

To construct an inscribed circle about a triangle using given informations.

- 1. Draw a line segment $|\overline{AB}| = 5$ cm
- 2. With centre at A, draw an arc of radius 3cm.
- 3. With centre at B, draw an arc of radius 3cm which cuts the previous are at point C.
- 4. Join C with A and B.
- 5. Thus ABC is the required triangle.
- 6. Draw AE and BF to bisect the angles BAC and ABC.
- 7. O is the centre of the inscribed circle.
- 8. From O draw OP perpendicular to BC.

- 9. With centre O and radius OP draw a circle.
- This circle is the inscribed circle of triangle ABC.

Here mOP = mOQ = mOR = 1 cm (approximately).

Describe a circle opposite to vertex A to a triangle ABC with sides |AB| = 6 3. cm, |BC| = 4 cm, |CA| = 3 cm. Find its radius also.

Solution:

Given:

Three sides
$$|\overline{AB}| = 6 \text{cm}, |\overline{BC}| = 4 \text{cm}, |\overline{CA}| = 3 \text{cm}$$

Required:

To construct an scribe circle opposite to vertex A to a triangle using given informations.

Steps of Construction:

- 1. Draw a line segment | BC | = 4cm.
- 2. With centre at B, draw an arc of 6cm.
- 3. With centre at c, draw an arc of 3cm which cuts the previous are at point A.
- 4. Join A with B and C.
- Thus ABC is the required triangle.
- Produce the sides AB and BC of \(\Delta ABC \).
- 7. Draw bisectors of exterior angles ABC and ACB.

These bisectors of exterior angles meet at I.

8. From I, draw perpendicular an side BC of $\Delta ABC.$

- 9. Draw the circle with radius I, D and centre at I, that will touch the side BC of the AABC externally and the produced sides AB and AC.
- Circumscribe a circle about an equilateral triangle ABC with each side of 4. length 4cm.

Solution:

Given:

Equilateral triangle ABC with each side of length 4cm.

Required:

To construct a circumscribed circle about an equilateral triangle using given information.

Steps of Construction:

- 1. Draw a line segment [AB] = 4cm
- 2. With centre at A. draw an arc of radius 4cm.
- 3. With centre at B, draw an arc of radius 4cm which cuts the previous are at point C.
- 4. Join C with A and B.
- 5. Thus ABC is the required triangle.
- 6. Draw LMN as perpendicular bisector to of side AC.
- 7. Draw PQR as perpendicular bisector of side BC.
- 8. LN and PQ intersect at point O.
- 9. With centre at O and radius mOA = mOB = mOC, draw a circle.
- This circle will pass through A. B and C whereas O
 is circumventer of the circumscribed circle. >

Inscribe a circle in an equilateral triangle ABC with each side of length 5cm.

Solution:

Given:

Equilateral triangle ABC with each side of length 5 cm.

Required:

To construct an inscribed circle about a triangle using given informations.

- 1. Draw a line segment $|\overline{AB}| = 5$ cm
- 2. With centre at A, draw an arc of radius 5cm.
- With centre at B, draw an arc of radius 5cm which cuts the previous are at point C.
- 4. Join C with A and B.
- 5. Thus ABC is the required triangle.
- 6. Draw \overrightarrow{AE} and \overrightarrow{BF} to bisect the angles BAC and ABC.
- 7. O is the centre of the inscribed circle.
- 8. From O draw OP perpendicular to BC.
- 9. With centre () and radius OP draw a circle.
- 10. This circle is the inscribed circle of triangle ABC.

6. Circumscribe and inscribe circles with regard to a right angle triangle with sides, 3cm, 4cm and 5cm.

Solution:

Given:

Three sides

$$|\overline{AB}| = 3$$
cm, $|\overline{BC}| = 4$ cm, $|\overline{CA}| = 5$ cm.

Required:

To construct an inscribed circle about a triangle using given information's.

Steps of Construction:

- 1. Draw a line segment |AB| = 3cm
- 2. With centre at A, draw an arc of radius 4cm.
- 3. With centre at B, draw an arc of radius 5cm which cuts the previous are at point C.
- 4. Join C with A and B.
- 5. Thus ABC is the required triangle.
- 6. Draw AE and BF to bisect the angles BAC and ABC.
- 7. O is the centre of the inscribed circle.
- 8. From O draw OP perpendicular to BC.
- 9. With centre O and radius OP draw a circle.
- 10. This circle is the inscribed circle of triangle ABC.
- 11. Drop OP LAB.

7. In and about a circle of radius 4cm describe a square.

(i) In a circle of radius 4cm describe a square:

Solution:

Given:

A circle of radius 4cm.

Draw a square inside the circle.

- 1. Draw circle of radius 4cm with O as a centre.
- 2. Through O draw two diameters AC and BD which bisect each other at right angle.
- 3. Join A with B, B with C, C with D and D with A.

- 4. Thus ABCD is the required square inscribed in the circle.
- (ii) Above a circle of radius 4cm describe a square:

Solution:

Given:

A circle of radius 4cm.

Required:

Draw a square inside the circle.

Steps of Construction:

- 1. Draw circle of radius 4cm with O as a centre.
- 2. Draw two diameters PR and QS which bisect each other at right angle.
- 3. At point P, Q, R and S draw tangents to meet each other at A, B, C and D. ABCD is the required circumscribed square.
- In and about a circle of radius 3.5cm describe a regular hexagon.
 - (i) In a circle of radius 3.5 cm describe a square:

Solution:

Given:

A circle of radius 3.5cm.

Required:

Draw a regular hexagon inside the circle.

- 1. Take any point O.
- 2. Take O as centre of and draw a circle of radius 3.5 cm.
- 3. Take any point A on the circumference of the circle.
- 4. From point A, draw an arc of radius OA which intersects the circle at point B and F.
- 5. Join (O and A with points B and F.

- 6. $\triangle OAB$ and $\triangle OAF$ are equilateral triangles therefore $\angle AOB$ and $\angle AOF$ are of measure 60° i.e., $m \overrightarrow{OA} = m \overrightarrow{AS} = m \overrightarrow{AF}$.
- 7. Produce \overline{FO} to meet the circle at C. Join B to C, Since in $\angle BOC = 60^{\circ}$ therefore m \overline{BC} = \overline{MOA} .
- 8. From C and F, draw arcs of radius \overline{OA} , which intersect the circle at points D and E.
- 9. Join C to D, D to E and F' to F ultimately. We have

 m $\overline{OA} = m \overline{OB} = m \overline{OC} = m \overline{OD} = m \overline{OE} = m \overline{OF}$ Thus the figure ABCDEF is a regular hexagon inscribed in the circle.
- (ii) Circumscribe a regular hexagon about a given circle.

Given:

A circle of radius 3.5 cm.

Steps of Construction:

- 1. Draw a diameter AD = 7 cm.
- 2. From point A draw an arc of radius $\overline{AO} = 3.5$ cm(the radius of the circle), which cuts the circle at points B and F.
- 3. Join B with O and extend it to meet the circle at E.
- 4. Join F with O and extend it to meet the circle at C.
- 5. Draw tangents to the circle at points A, B, C, D, E and F intersecting one another at points P, Q, R, S, T and U respectively.
- 6. Thus PQRSTU is the circumscribed regular hexagon.

9. Circumscribe a regular hexagon about a circle of radius 3cm.

Given:

A circle of radius 3 cm.

- 1. Draw a diameter AD = 6 cm.
- From point A draw an arc of radius AO = 3
 cm (the radius of the circle), which cuts the
 circle at points B and F.
- Join B with O and extend it to meet the circle at E.
- Join F with O and extend it to meet the circle at C.
- 5. Draw tangents to the circle at points A, B, C,
- D, E and F intersecting one another at points P, Q, R, S, T and U respectively.
- Thus PQRSTU is the circumscribed regular hexagon.

SOLVED EXERCISE 13.3

In an arc ABC the length of the chord |BC| = 2cm. Draw a secant |PBC| = 8cm, where P is the point outside the arc. Draw a tangent through point P to the arc.

Steps of Construction:

- (i) Draw an arc \widehat{ABC}
- (ii) Take a chord $\overline{BC} = 2cm$.
- (iii) Produce CB towards B and take point P that PBC secant in 8cm.
- (iv) Find M, the midpoint of \overline{CP} .
- (v) Take M as centre and draw a semi circle.
- (vi) Draw DB \(\to\) CP which meets the semi circle at point D.
- (vii) Take P as centre and draw an arc of radius m PD, this arc intersect the given arc at T.
- (viii) Join P to T and produce it.

Result:

PT is the required tangent.

Construct a circle with diameter 8cm. Indicate a point C, 5cms away om
its circumference. Draw a tangent from point C to the circle without using
its centre.