Rule I:

If linear factor (ax + b) occurs as a factor of D(x), then there is a partial fraction of the form $\frac{A}{ax+b}$, where A is a constant to be found.

In
$$\frac{N(x)}{D(x)}$$
, the polynomial D(x) may be written as,

 $D(x) = (a_1x + b)(a_2x + 63)....(a_nx + b_n)$ with all factors distinct.

We have,
$$\frac{N(x)}{D(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{a_2x + b_2} + \frac{A_3}{a_3x + b_3} + \dots + \frac{A_n}{a_nx + b_n}$$
,

where $A_1, A_2, ... A_n$ are constants to-be determined.

Note:

General method applicable to resolve all rational fractions of the form $\frac{N(x)}{D(x)}$ is as follows:

- (i) The numerator N(x) must be of lower degree than the denominator D(x).
- (ii) If degree of N(x) is greater than the degree of D(x), then division is used and the remainder fraction R(x) can be broken into partial fractions.
- (iii) Make substitution of constants accordingly
- (iv) Multiply both the sides by L.C.M.
- (v) Arrange the terms on both sides in descending order.
- (vi) Equate the coefficients of like powers of x on both sides, we get as many as equations as there are constants in assumption.
- (vii) Solving these equations, we can find the values of constants.

SOLVED EXERCISE 4.1

Resolve into partial fractions.

(1)
$$\frac{7x-9}{(x+1)(x-3)}$$

Solution:

$$\frac{7x-9}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-1}$$

Multiplying both sides by (x+1)(x-3), we get

$$7x - 9 = A(x - 3) + B(x + 1) \tag{1}$$

To find A, we put $x = 1 = 0 \Rightarrow x = -1$ in eq. (1), we get

$$7(1)-9=A(-1-3)+B(-1+1)$$

$$7-9=a(-4)+B(0)$$

$$= 16 = -4 A$$

$$-4A = 2 - 16$$

Dividing both sides '-4', we get

$$A = -4$$

To find B, we put
$$x - 3 = 0 \Rightarrow x = 3$$
 in eq. (1), we get $7(3) - 9 = A(3 - 3) + b(3 + 1)$
 $21 - 9 = A(0) + B(4)$

$$12 = 4 B$$

Or
$$4B = 12$$

Dividing both sides by '4', we get

$$B = 3$$

Thus required partial fractions are $\frac{-4}{x+1} + \frac{3}{x-3}$

Hence,
$$\frac{7x-9}{(x+1)(x-3)} = \frac{4}{x+1} + \frac{3}{x-3}$$

(2)
$$\frac{x-11}{(x-4)(x+3)}$$

Solution:

$$\frac{x-11}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$

Multiplying both sides by (x - 1)(x + 3), we get

$$x-11 = A(x+3) + B(x-1)$$
 (1)

To find A, we put $x - 4 = 0 \Rightarrow x = 4$ in eq. (1), we get

$$4-11 = A (4+3) + B (4-4)$$

 $-7 = A (7) + B (0)$

$$-7 = A(7)$$

 $-7 = 7A$

or
$$7A = -7$$

Dividing both sides by '7', we get

$$A = -1$$

To find B, we put $x + 3 = 0 \Rightarrow x = -3$ in eq. (1), we get

$$-3 - 11 = A(-3 + 3) + B(-3 - 4)$$

 $-14 = A(0) + B(-7)$

$$-14 = A(0) + B(-7)$$

$$-14 = -7 B$$

Or
$$-7B = -14$$

Dividing both sides by '-7', we get

$$B = 2$$

--

Thus required partial fractions are $\frac{-1}{x-4} + \frac{2}{x+3}$

Hence,
$$\frac{x-11}{(x-4)(x+3)} = -\frac{1}{x-1} + \frac{2}{x+3}$$

$$(3) \qquad \frac{3x-1}{x^2-1}$$

Solution:

$$\frac{3x-1}{x^2-1} = \frac{3x-1}{(x-1)(x+1)}$$

Let
$$\frac{3x-1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$

Multiplying both sides by (x - 1)(x + 1), we get

$$3x-1=A(x+1)+B(x-1)$$
 (1)

To find A, we put $x - 1 = 0 \Rightarrow x = 1$ in eq. (1), we get

$$3(1)-1=A(1+1)+B(1-1)$$

$$3-1=A(2)+B(0)$$

$$2 = 2 A$$

or
$$2A=2$$

Dividing both sides by '2', we get

$$A = 1$$

To find B, we put $x + 1 = 0 \Rightarrow x = -1$ in eq. (1), we get

$$3(-1)-1=A(-1+1)+B(-1-1)$$

$$-3 - 1 = A(0) + B(-2)$$

$$-4 = -2 B$$

-2B = -4

$$B = 2$$

Thus required partial fractions are $\frac{-1}{x-1} + \frac{2}{x+1}$

Hence,
$$\frac{3x-1}{x^2-1} = \frac{-1}{x-1} + \frac{2}{x+1}$$

$$(4) \frac{x-5}{x^2+2x-3}$$

Solution:

$$\frac{x-5}{x^2+2x-3} = \frac{x-5}{x^2+3x-x-3}$$

$$= \frac{x-5}{x(x+3)-1(x+3)} = \frac{x-5}{(x-1)(x+3)}$$

Let
$$\frac{x-5}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3}$$

Multiplying both sides by (x - 1)(x + 3), we get

$$x-5=A(x+3)+B(x-1)$$
____(1)

To find A, we put $x - 1 = 0 \Rightarrow x = 1$ in eq. (1), we get

$$1-5=A(1+3)+B(1-1)$$

$$-4 = A(1+3) + B(0)$$

$$-4 = 4 A$$

Or
$$4 A = -4$$

Dividing both sides by '4', we get

$$A = -1$$

To find B, we put $x + 3 = 0 \Rightarrow x = -3$ in eq. (1), we get

$$-3-5=A(-3+3)+B(-3-1)$$

$$-8 = A(0) + B(-4)$$

$$-8 = -4 B$$

Or
$$-4B = -8$$

Dividing both sides by '-4', we get

$$B = 2$$

Thus required partial fractions are $\frac{-1}{x-1} + \frac{2}{x+3}$

Hence,
$$\frac{x-5}{x^2+2x-3}=-\frac{1}{x-1}+\frac{2}{x+3}$$

(5)
$$\frac{3x+3}{(x-1)(x+2)}$$

Solution:

Let
$$\frac{3x+3}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$

Multiplying both sides by (x - 1)(x + 2), we get

$$3x + 3 = A(x + 2) + B(x - 1)$$
 (1)

To find A, we put $x - 1 = 0 \Rightarrow x = 1$ in eq. (1), we get

$$3(1)+3=A(1+2)+B(1-1)$$

$$3 + 3 = A(3) + B(0)$$

$$6 = 3 A$$

Or
$$3 A = 6$$

Dividing both sides by '3', we get

$$A = 2$$

To find B, we put $x + 2 = 0 \Rightarrow x = -2$ in eq. (1), we get

$$3(2) + 3 = A(-2 + 2) + B(-2 - 1)$$

$$-6+3 = A(0)+B(-3)$$

$$-3 = -3 B$$

$$-3 B = -3$$

Dividing both sides by '-3', we get

$$B = 1$$

Thus required partial fractions are $\frac{2}{x-1} + \frac{1}{x+2}$

Hence,
$$\frac{3x+3}{(x-1)(x+2)} = \frac{2}{x-1} + \frac{1}{x+2}$$

(6)
$$\frac{7x-25}{(x-4)(x-3)}$$

Solution:

Let
$$\frac{7x-25}{(x-4)(x-3)} = \frac{A}{x-4} + \frac{B}{x-3}$$

Multiplying both sides by (x - 4)(x - 3), we get

$$7x-25 = A(x-3) + B(x-4)$$
 (1)

To find A, we put $x - 1 = 0 \Rightarrow x = 1$ in eq. (1), we get 7(4) - 25 = A(4 - 3) + B(4 - 4)

$$28 - 25 = A(1) + B(0)$$

$$3 = A$$

Or A = 3

To find B, we put $x - 3 = 0 \Rightarrow x = 3$ in eq. (1), we get

$$7(3) - 25 = A(3 - 3) + B(3 - 4)$$

 $21 - 25 = A(0) + B(-1)$
 $-B = -4$
 $B = 4$

Or

Thus required partial fractions are $\frac{3}{x-4} + \frac{4}{x-3}$

Hence,
$$\frac{7x-25}{(x-4)(x-3)} = \frac{3}{x-4} + \frac{4}{x-3}$$

(7)
$$\frac{x^2+2x+1}{(x-2)(x+3)}$$

Solution:

$$\frac{x^2 + 2x + 1}{(x - 2)(x + 3)} = \frac{x^2 + 2x + 1}{x^2 + 3x - 2x - 6}$$
$$= \frac{x^2 + 2x + 1}{x^2 + x - 6}$$

By long division, we have

$$x^{2} + x - 6 \overline{\smash)x^{2} + 2x + 1}$$

$$\pm x^{2} \pm x \mp 6$$

$$x = 7$$

$$\frac{x^2 + 2x + 1}{(x-2)(x+3)} = 1 + \frac{x+7}{x^2 + x - 6}$$

$$=1+\frac{x+7}{(x-2)(x+3)}$$

Let
$$\frac{x+7}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3}$$

Multiplying both sides by (x-2)(x+3), we get

$$x + 7 = A(x + 3) + B(x - 2)$$
 (1)

To find A, we put $x - 2 = 0 \Rightarrow x = 2$ in eq. (1), we get

$$2 + 7 = A(2 + 3) + B(2 - 2)$$

$$9 = A(5) + B(0)$$

$$9 = 5A$$

Or
$$5A = 9$$

Dividing both sides by '5', we get

$$A = \frac{9}{5}$$

To find B, we put $x + 3 = 0 \Rightarrow x = -3$ in eq. (1), we get

$$-3 + 7 = A (-3 + 3) + B (-3 - 2)$$

 $4 = A (0) + B (-5)$
 $4 = -5 B$

Or

$$-5 B = 4$$

Dividing both sides by '-5', we get

$$B = \frac{4}{5}$$

Thus required partial fractions are $\frac{9/5}{x-2} + \frac{-4/5}{x+3}$

Hence,
$$\frac{x^2+2x+1}{(x-2)(x+3)}=1+\frac{9}{5(x-2)}-\frac{4}{5(x+3)}$$

$$(8) \frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1}$$

Solution:

By long division, we have

$$\begin{array}{r}
 2x + 3 \\
 3x^2 - 2x - 1 \overline{\smash)6x^3 + 5x^2 - 7} \\
 \pm 6x^3 \mp 4x^2 \mp 2x \\
 \hline
 9x^2 + 2x - 7 \\
 \pm 9x^2 \mp 6x \mp 3 \\
 \hline
 8x - 4
 \end{array}$$

$$\frac{6x^{3} + 5x^{2} - 7}{3x^{2} - 2x - 1} = 2x + 3 + \frac{8x - 4}{3x^{2} - 3x + x - 1}$$

$$= 2x + 3 + \frac{8x - 4}{3x(x - 1) + 1(x - 1)}$$

$$= 2x + 3 + \frac{8x - 4}{(3x + 1)(x - 1)}$$

$$= 8x - 4$$

$$= 2x + 3 + \frac{8x - 4}{(3x + 1)(x - 1)}$$

Let
$$\frac{8x-4}{(3x+1)(x-1)} = \frac{A}{3x+1} + \frac{B}{x-1}$$

Multiplying both sides by (3x + 1)(x - 1), we get

$$8x - 4 = A(x - 1) + B(3x + 1)$$
 (1)

To find A, we put $3x + 1 = 0 \Rightarrow 3x = -1 \Rightarrow x = -\frac{1}{3}$ in eq. (1), we get

$$8\left(-\frac{1}{3}\right) - 4 = A\left(-\frac{1}{3} - 1\right) + B\left[3\left(-\frac{1}{3}\right) + 1\right]$$
$$-\frac{8}{3} - 4 = A\left(-\frac{4}{3}\right) + B(0)$$
$$-\frac{20}{3} = -\frac{4}{3}A$$

Or
$$-\frac{4}{3}A = -\frac{20}{3}$$

$$\Rightarrow \frac{4}{3}A = \frac{20}{3}$$

$$A = \frac{20}{3} \times \frac{3}{4}$$

$$A = 5$$

To find B, we put $x - 1 = 0 \Rightarrow x = 1$ in eq. (1), we get 8(1) - 4 = A(1 - 1) + B[3(1) + 1]

$$8-4=A(0)+B(4)$$

$$4 = 4B$$

Or 4B=4

Dividing both sides by '4', we get

$$B = 1$$

Thus required partial fractions are $\frac{5}{3x+1} + \frac{1}{x-1}$

Hence,
$$\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1} = 2x + 3 + \frac{5}{3x + 1} + \frac{1}{x - 1}$$

Resolution of a fraction when D(x) consists of repeated linear factors:

Rule II:

If a linear factor (ax + b) occurs n times as a factor of D(x), then there are n partial fractions of the form.

 $\frac{A_1}{\left(ax+b\right)} + \frac{A_2}{\left(ax+b\right)^2} + ... + \frac{A_n}{\left(ax+b\right)^n} \text{ where } A_1 A_2, ..., A_n, \text{ are constants and } n \ge 2 \text{ is a positive integer.}$

$$\frac{N(x)}{D(x)} = \frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + ... + \frac{A_n}{(ax+b)^n}$$