```
x \in A and x \in B \cap C
                x \in A and [x \in B \text{ or } x \in C]
         \Rightarrow [x \in A and x \in B] or [x \in A and x \in C]
         \Rightarrow [x \in A \cap B] or [x \in A \cap C]
                  x \in (A \cap B) \cup (A \cup C)
         Hence by def. of subsets
         A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)
         Similarly (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)
                                                                                    (ii)
         From (i) and (ii), we have , A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
  (g) De-Morgan's laws
       For any two sets A and B, prove that
  (i) (A \cup B)' = A' \cap B'
Proof: Let x \in (A \cup B)'
                                              (by definition of complement of set)
                  x \notin A \cup B
         ⇒ x ∉ A and x ∉ B
         \Rightarrow x \in A' and x \in B'
                 x \in A' \cap B'
                                              (by definition of intersection of sets)
                                                                 (i)
                  (A \cup B)' \subseteq (A \cup B)'
                                                                 (ii)
         Similarly A' \cap B' \subseteq (A \cup B)
```

(ii) Let $x \in (A \cap B)'$

 \Rightarrow $x \in A \cap B$

 \Rightarrow $x \notin A \text{ or } x \notin B$

 \Rightarrow $x \in A' \text{ or } x \in B'$

 \Rightarrow $x A' \cup B'$

 $\Rightarrow (A \cap B)' \subseteq A' \cup B' \qquad (i)$

Using (i) and (ii), we have $(A \cup B)' = A' \cap B'$

Let $y \in A' \cap B'$

 \Rightarrow $y \in A \cap B$

⇒ y ∉ A or x ∉ B

 \Rightarrow y $\notin A \cap B$

 \Rightarrow $y \in (A \cap B)'$

 $\Rightarrow (A' \cap B)' \subseteq A' \cap B' \tag{ii}$

From (i) and (ii) we have proved that

 $(A \cap B)' = A' \cup B'$

SOLVED EXERCISE 5.2

1. If
$$X = \{1,3,5,7,...,19\}$$
, $Y = \{0,2,4,6,8,...,20\}$
 $Z = \{2,3,5,7,11,13,17,19,23\}$, then find the following.

(i) $X \cup (Y \cup Z)$

Solution:

$$Y \cup Z = \{0, 2, 4, 6, 8, ..., 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= $\{0, 2, 3, 4, ..., 17, 19, 20, 23\}$
 $X \cup (Y \cup Z) = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 3, 4, ..., 17, 19, 20, 23\}$
= $\{0, 1, 2, 3, ..., 30, 33\}$

(ii) $(X \cup Y) \cup Z$

Solution:

$$X \cup Y = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 4, 6, 8, ..., 20\}$$

= $\{0, 1, 2, 3, ..., 19, 20\}$
= $\{0, 1, 2, 3, ..., 19, 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= $\{0, 1, 2, 3, ..., 20, 23\}$

(iii) $X \cap (Y \cap Z)$

Solution:

$$Y \cap Z = \{0, 2, 4, 6, 8, ..., 20\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= ϕ
 $X \cap (Y \cap Z)$
 $X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \phi$
= ϕ

(iv) $(X \cap Y) \cap Z$

Solution:

$$X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, ..., 20\}$$

= ϕ
 $(X \cap Y) \cap Z = \phi \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= ϕ

(v) $X \cup (Y \cap Z)$

Solution:

$$Y \cap Z = \{0, 2, 4, 6, 8, ..., 20\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

= $\{2\}$
 $X \cup (Y \cap Z) = \{1, 3, 5, 7, ..., 19\} \cup \{2\}$
= $\{1, 2, 3, 5, 7, ..., 19\}$

(vi) $(X \cup Y) \cap (X \cup Z)$

Solution:

$$X \cup Y = \{1, 3, 5, 7, ..., 19\} \cup \{0, 2, 4, 6, 8, ..., 20\}$$

$$= \{0, 1, 2, 3, .., 19, 20\}$$

$$X \cup Z = \{1, 3, 5, 7, ..., 19\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{1, 2, 3, 5, 7, ..., 17, 19, 23\}$$

$$(X \cup Y) \cap (X \cup Z) = \{0, 1, 2, 3, ..., 19, 20\} \cap \{1, 2, 3, 5, 7, ..., 17, 19, 23\}$$

$$= \{1, 2, 3, 5, 7, ..., 19\}$$

(vii) $X \cap (Y \cup Z)$

Solution:

$$Y \cup Z = \{0, 2, 4, 6, 8, ..., 20\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{0, 2, 3, 4, 5, 6, ..., 19, 20, 23\}$$

$$X \cap (Y \cup Z) = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 3, 4, 5, 6, ..., 19, 20\}$$

$$= \{3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, ..., 20\}$$

$$= \emptyset$$

$$X \cap Z = \{1, 3, 5, 7, ..., 19\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$$

$$= \{3, 5, 7, 11, 13, 17, 19\}$$

(viii) $(X \cap Y) \cup (X \cap Z)$

Solution:

$$X \cap Y = \{1, 3, 5, 7, ..., 19\} \cap \{0, 2, 4, 6, 8, ..., 20\}$$

= ϕ
 $X \cap Z = \{1, 3, 5, 7, ..., 19\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$
= $\{3, 5, 7, 11, 13, 17, 19\}$

- 2. If $4 = \{1, 2, 3, 4, 5, 6\}$, $B = \{2, 4, 6, 8\}$, $C \{1, 4, 8\}$. Prove the following identities:
 - (i) $A \cap B = B \cap A$

Solution:

L.H.S = R.H.S.

Hence proved.

(ii)
$$A \cup B = B \cup A$$

Solution:

(iii) $A \cup (B \cup C) = (A \cap B) \cup (A \cap C)$

Solution:

```
L.H.S. = A \cap (B \cup C)
         = \{1, 2, 3, 4, 5, 6\} \cap (\{2, 4, 6, 8\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 5, 6,\} \cap \{1, 2, 4, 6, 8\}
         = \{1, 2, 3, 4, 5, 6\} (i)
R.HS. = (A \cap B) \cup (A \cup C)
         = (\{1, 2, 3, 4, 5, 6\} \cap \{2, 4, 6, 8\}) \cup (\{1, 2, 3, 4, 5, 6\} \cap \{1, 4, 8\})
         = \{2, 4, 6\} \cup \{1, 4\}
         = \{1, 2, 3, 4, 5, 6\} (ii)
         From (i) and (ii), we have
L.H.S = R.H.S.
         Hence Proved.
 (iv) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
Solution:
L.H.S. \neq A \cup (B \cap C)
         = \{1, 2, 3, 4, 5, 6\} \cup (\{2, 4, 6, 8\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 5, 6,\} \cup \{4, 8\}
         = \{1, 2, 3, 4, 5, 6, 8\} (i)
R.HS. = (A \cup B) \cap (A \cup C)
         = (\{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 6, 8\}) \cap (\{1, 2, 3, 4, 5, 6\} \cap \{1, 4, 8\})
         = \{1, 2, 3, 4, 6, 8\} \cap \{1, 2, 3, 4, 5, 6, 8\}
         = \{1, 2, 3, 4, 5, 6, 8\} (ii)
         From (i) and (ii), we have
L.H.S = R.H.S.
         Hence Proved.
      If U = \{1,2,3,4,5,6,7,8,9,10\} A = \{1,3,5,7,9\}, B = \{2,3,5,7\}, then
       verify the De-Morgan's Laws
         i.e., (A \cap B) = A' \cup B' and (A \cup B)' = A' \cap B'
Solution:
L.H.S. = A' \cup B'
         = \cup - (A \cap B)
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - (\{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 7\})
         = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{3, 5, 7\}
         = \{1, 2, 4, 6, 8, 9, 10\} (i)
R.H.S. = A' \cup B'
        = [\cup -A] \cup [\cup -B]
         = (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{1, 3, 5, 7, 9\})
        \cup ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - {2, 3, 5, 7})
        = \{2, 4, 6, 8, 10\} \cup \{1, 4, 6, 8, 9, 10\}
        = \{1, 2, 4, 6, 8, 9, 10\} (ii)
        From (i) and (ii), we have
        L.H.S = R.H.S.
```

4. If $U = \{1, 2, 3, ..., 20\}$, $X = \{1, 3, 7, 9, 15, 18, 20\}$ and $Y = \{1, 3, 5, ..., 17\}$, then show that

(i)
$$X - Y = X \cap Y'$$

Solution:

(ii)
$$Y - X = Y \cap X'$$

Hence Proved.

Solution:

Verify the fundamental properties for given sets:

(a) A and B are any two subsets of U, then A u B = B u A (commutative law).

A =
$$\{1,3,5,7\}$$
 and B = $\{2,3,5,7\}$
then A \cup B = $\{1,3,5,7\}$ \cup $\{2,3,5,7\}$ = $\{1,2,3,5,7\}$
and B \cup A = $\{2,3,5,7\}$ \cup $\{1,3,5,7\}$ = $\{1,2,3,5,7\}$
Hence, verified that A \cup B = B \cup A.

(b) Commutative property of intersection

For example
$$A = \{1, 3, 5, 7\}$$
 and $B = \{2, 3, 5, 7\}$
Then $A \cap B = \{1,3,5,7\} \cap \{2,3,5,7\} = \{3,5,7\}$
and $B \cap A = \{2, 3,5, 7\} \cap \{1,3, 5, 7\} = \{3, 5, 7\}$
Hence, verified that $A \cap B = B \cap A$.

(c) If A, B and C are the subsets of U, then $(A \cup B) \cup C = A \cup (B \cup C)$.

(Associative law) $A = \{1,2,4,8\}; B = \{2,4,6\}$ Suppose And $C = \{3,4,5,6\}$ Then L.H.S. $= (A \cup B) \cup C$ $= (\{1,2,4,8\} \cup \{2,4,6\}) \cup \{3.4,5,6\}$ $= \{1,2,4,6,8\} \cup \{.3,4,5.6\}$ $= \{1,2,3,4.5,.6,8\}$ R.H.S. $= A \cup (B \cup C)$ and $= \{42, 4, 8\} \cup (\{2, 4, 6\} \cup \{3, 4, 5, 6\})$ $= \{1,2,4,8\} \cup \{2,3,4,5,6\}$ $= \{42,3,4,5,6,8\}$

Hence, union of Sets is associative.

(d) If A, B and C are the subsets of U, then $(A \cap B) \cap C = A \cap (B \cap C)$ (Associative Law).

L.H.S. = R.H.S.

Suppose .,
$$A = \{1, 2, 4, 8\}; 5 = \{2, 4, 6\} \text{ and } C = \{3, 4, 5, 6\}$$

then L.H.S, $= (A \cap B) \cap C$
 $= (\{1, 2, 4, 8\} \cap \{2, 4, 6\}) \cap \{3, 4, 5, 6\}$
 $= \{2, 4\} \cap \{3, 4, 5, 6\} = \{4\}$
and R.H.S. $= A \cap (B \cap C)$
 $= \{1, 2, 4, 8\} \cap (\{2, 4, 6\} \cap \{3, 4, 5, 6\})$
 $= (1, 2, 4, 8\}; = \{4, 6\} - \{4\}$
L.H.S. $= R.H.S$.

Hence, intersection of sets is associative.

Distributive laws

(e) Union is distributive over intersection of sets

If A, B and C are the subsets of universal set U, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Solution: Suppose $A = \{1, 2, 4, 8\}, B = \{2, 4, 6\} \text{ and } C \{3, 4, 5, 6\}$ then L.H.S $= A \cup (B \cap C)$ $= \{1,2,4.8\} \cup (\{2,4,6) \cap \{3,4,5,6\})$ $= \{1,2,4,8\} \cup \{4,6\} - \{1,2,4,6,8\}$

and R.H.S =
$$(A \cup B) \cap (A \cup C)$$

= $(\{1, 2, 4, 8\} \cup \{2, 4, 6\}) \cap (\{1, 2, 4, 8\} \cup \{3, 4, .5, 6\})$
= $(1,2,4,6,8) \cap \{1,2,3,4,5,6,8\}$
= $\{1,2,4,6,8\}$
L.H.S = R.H.S

(f) Intersection is distributive over union of sets

(g) De Morgan's Laws $(A \cap B)' = A' \cup B'$ and $(A \cup B)' = A' \cap B'$

Suppose
$$U = \{1,2,3,4,...,10\}$$

 $A = \{2,4,6,8.10\}$ $\Rightarrow \{1,3,5,7,9\}$
 $B = \{1,2,3,4,5,6\}$ $\Rightarrow B' = \{7,8,9,10\}$
Now consider $A \cap B = \{2,4,6,8,10\} \cap \{1,2,3,4,5,6\}$

$$= \{2, 4, .6\}$$
Then L.H.S. = $(A \cap B)' = U - (A \cap B)$

$$= \{1, 2, 3, 4, ..., 10\} - \{2, 4, 6\}$$

$$= \{1, 2, 3, 4, ..., 10\} - \{2, 4, 6\}$$

$$= \{1,3,5,7,8,9,10\}$$
and R.H.S. = $A \cup B'$
= $\{1,3,5,7,9\} \cup \{7,8,9,10\}$
= $\{1,3,5,7,8,9,10\}$

L.H.S. = R.H.S.

$$(A \cup B)' = A' \cap B'$$

Suppose
$$U = \{1, 2, 3, 4, ..., 10\}$$

$$A = \{2, 4, 6, 8, 10\}$$
 $\Rightarrow A' = \{-1, 3, 5, 7, 9\}$

$$B = \{1, 2, 3, 4, 5, 6\} \Rightarrow B' = \{7, 8, 9, 10\}$$

Now consider $A \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 2, 3, 4, 5, 6\}$ $\cdot = \{1, 2, 3, 4, 5, 6, 8, 10\}$

L.H.S. =
$$(A \cup B)' = U - (A \cup B)$$

= $\{1,2,3,4,..., 10\} - \{1,2,3,4,5,6,8,10\}$
= $\{7,9\}$

and R.H.S A' = B' = $\{1,3,5,7,9\} \cap \{7,8,9,10\}$

$$= \{7,9\}$$

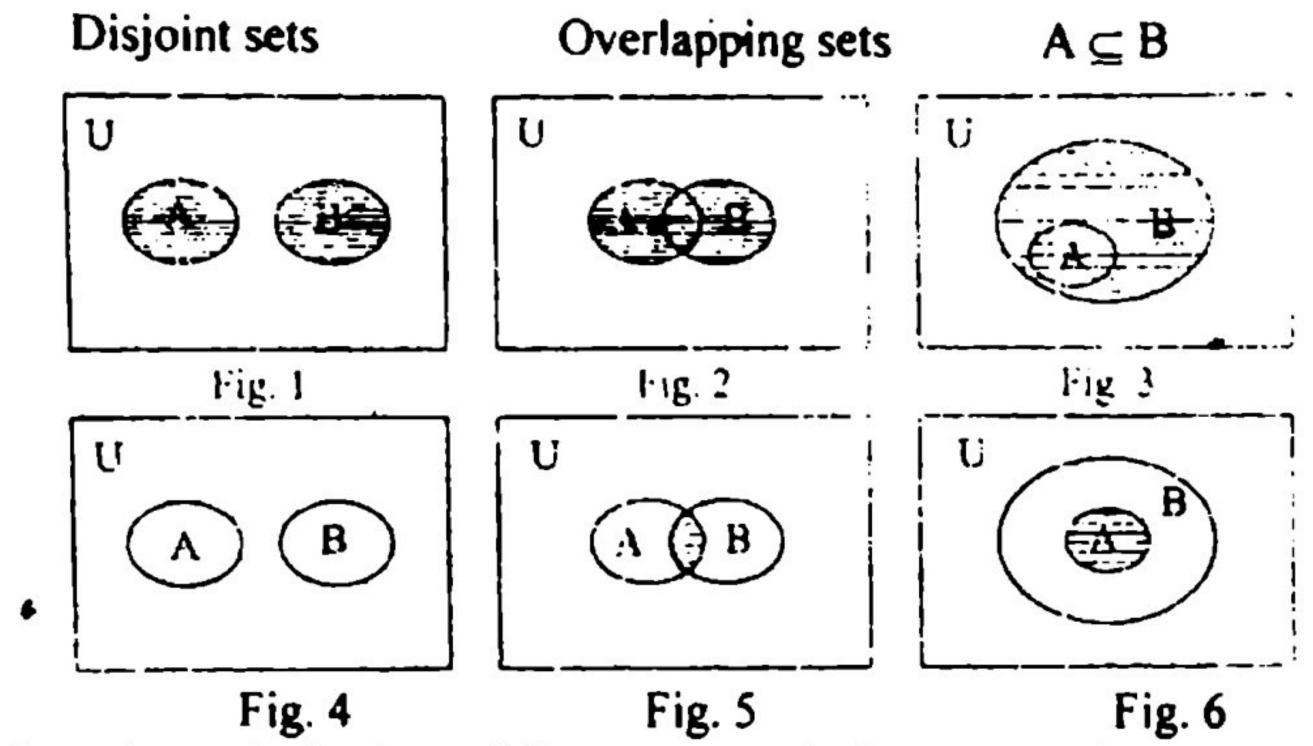
L.H.S.= R.H.S.

Venn Diagram:

British mathematician John Venn (1834 – 1923) introduced rectangle for a universal set U and its subsets A and B as closed figures inside this rectangle.

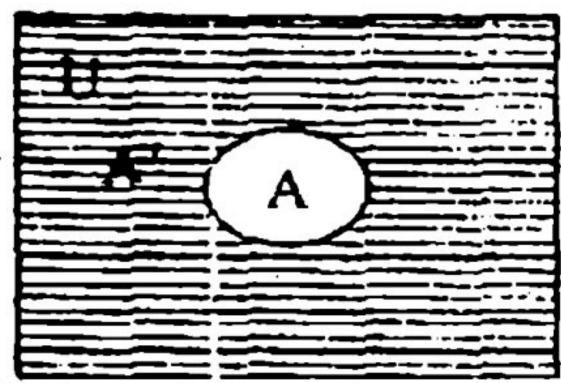
Use Venn diagrams to represent:

(a) Union and intersection of sets



(Regions shown by horizontal line segments in figures 1 to 6.)

(b) Complement of a set



U - A = A' is shown by horizontal line segments.

Use Venn diagram to verify:

(a) Commutative law for union and intersection of sets.

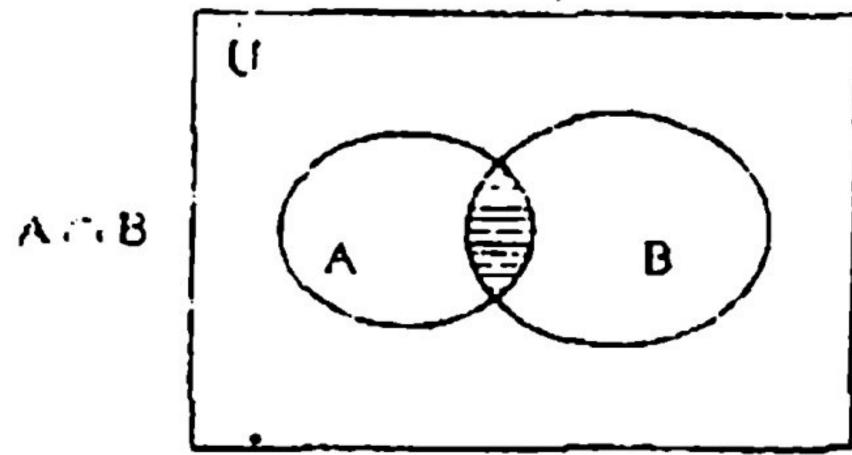


A ∪ B is shown by horizontal line segments,

B U A is shown by vertical line segments.

The regions shown in both cases are equal.

Thus $A \cup B = B \cup A$.,

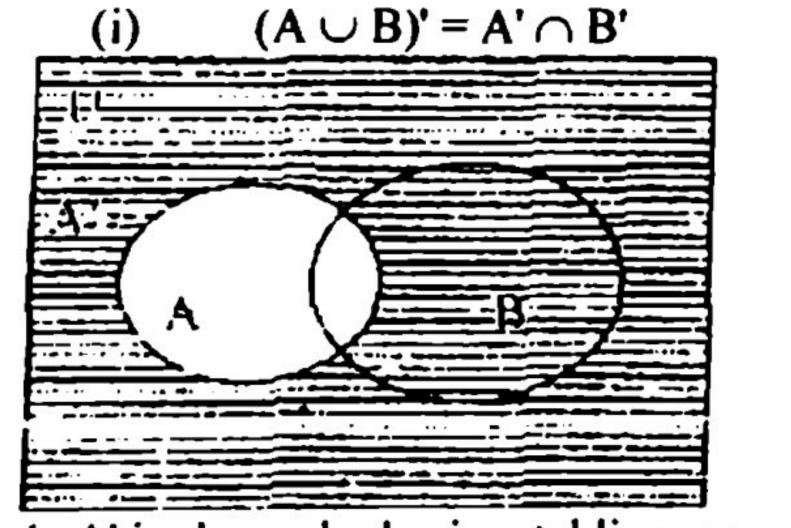


 $B \cap A$ $B \cap A$ $B \cap A$

 $A \cap B$ is shown by horizontal line segments. $B \cap A$ is shown by vertical line segments. The regions shown in both cases are equal.

Thus $A \cap B = B \cap A$.

(b) De Morgan's laws



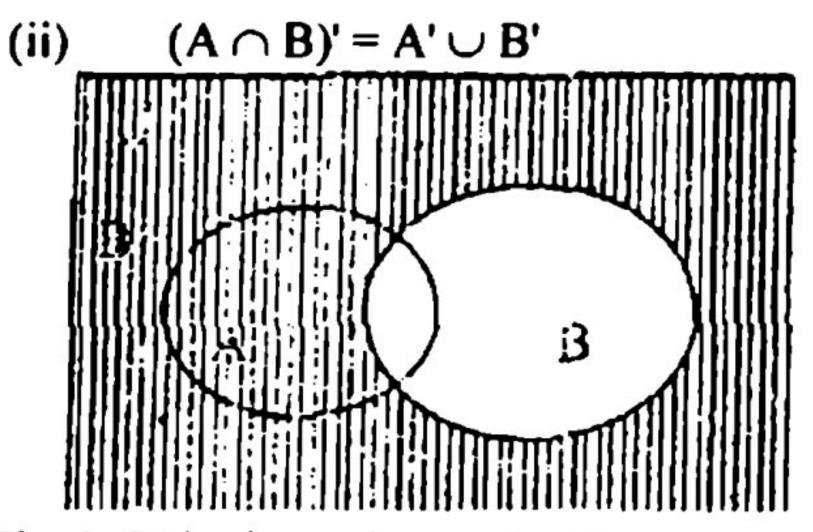
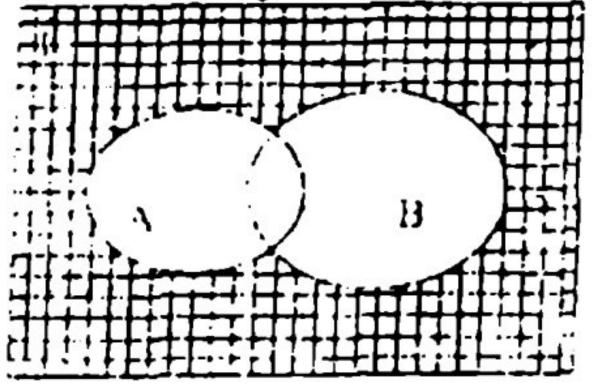


Fig. 1: A' is shown by horizontal line segments Fig. 2: B' is shown by vertical line segments



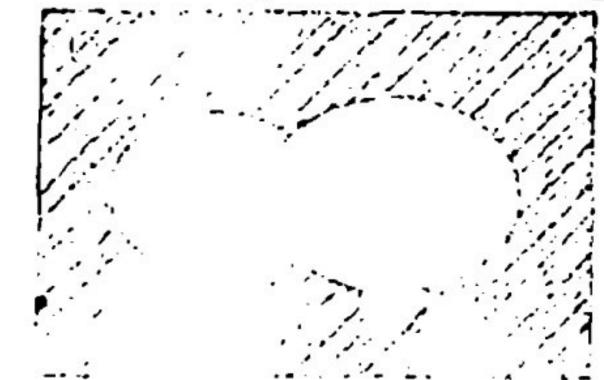


Fig. 3: $A' \cap B'$ is shown by squares

Fig. 4: (A ∪ B)' is shown by stanting line segments

Regions shown in Fig. 3 and Fig. 4 are equal.

Thus
$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

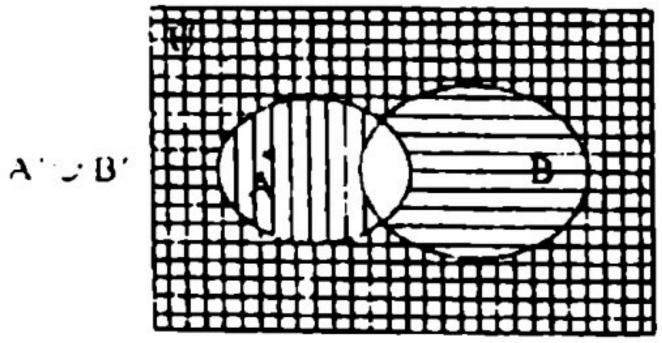


Fig. 5 A' \cup B' is shown by squares, horizontal and vertical line segments.

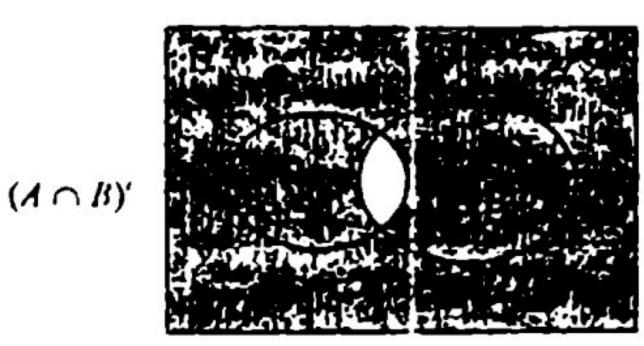


Fig.6 U – $(A \cap B) = (A \cap B)$ is shown by squares, horizontal.

Regions shown in Fig. 5 and Fig. 6 are equal.

Thus $(A \cap B)' = A' \cup B'$

(c) Associative law:

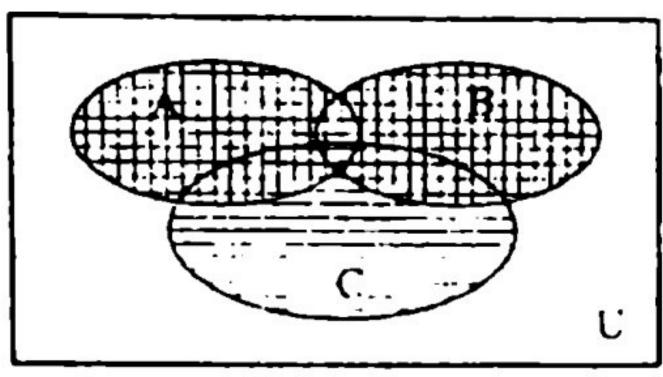


Fig. 1
(A U B) U C is shown in the above figure,

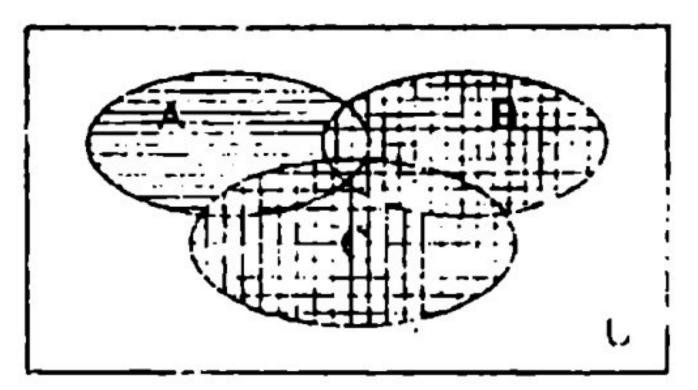


Fig. 2 $A \cup (5 \cup C)$ is shown in the above figure.

Regions shown in fig. 1 and fig. 2 by different ways are equal.

Thus $(A \cup B) \cup C = A \cup (B \cup C)$

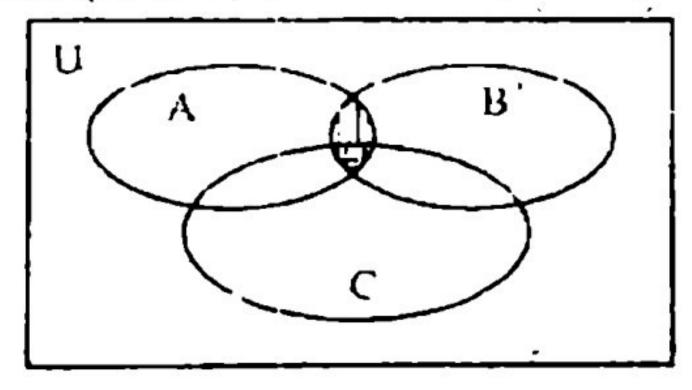


Fig. 3

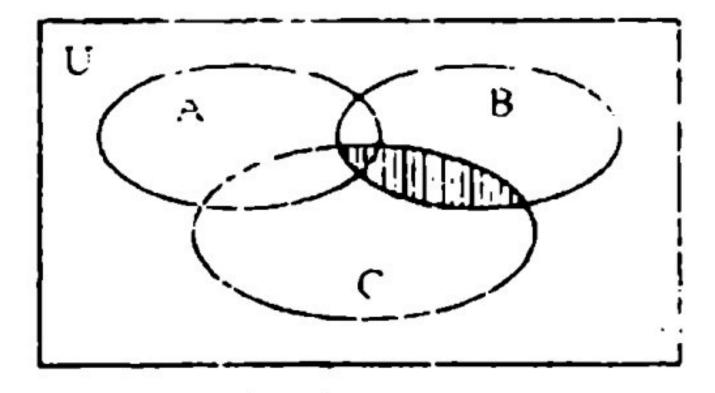
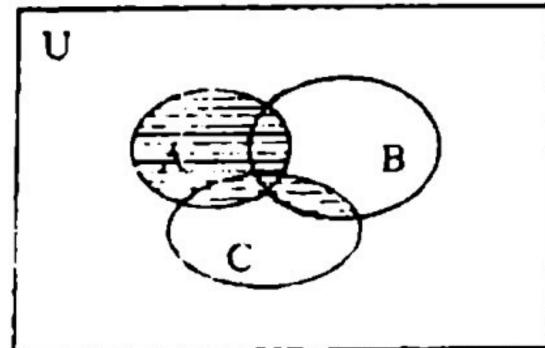


Fig. 4

(A ∩ B) ∩ C is shown in figure 3 by double
 A ∩ (B ∩ C) is shown in figure 4 by double crossing line segments
 Regions shown in Fig. 3 and fig. 4 are equal.
 Thus (A ∩ B)' ∩ C' = A ∩ (B ∩ C)

(d) Distributive law:



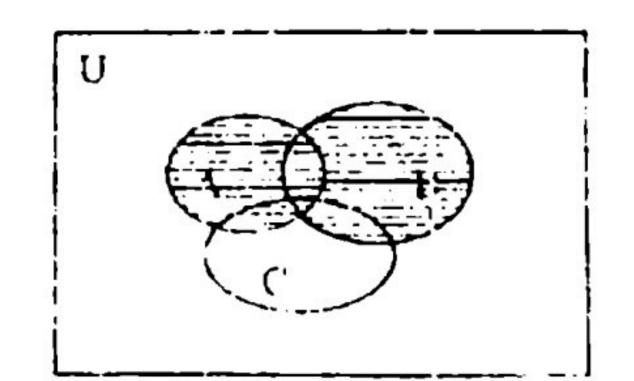


Fig. 1: $A \cup (B \cap C)$ is shown by horizontal line segments in the above figure.

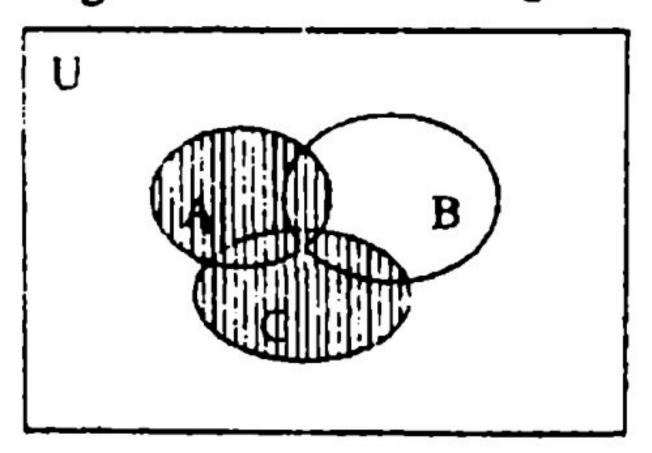


Fig. 3: A ∪ C is shown by vertical line segments in Fig. 3,

Fig. 2: A u B is shown by horizontal line segments in the above figure.

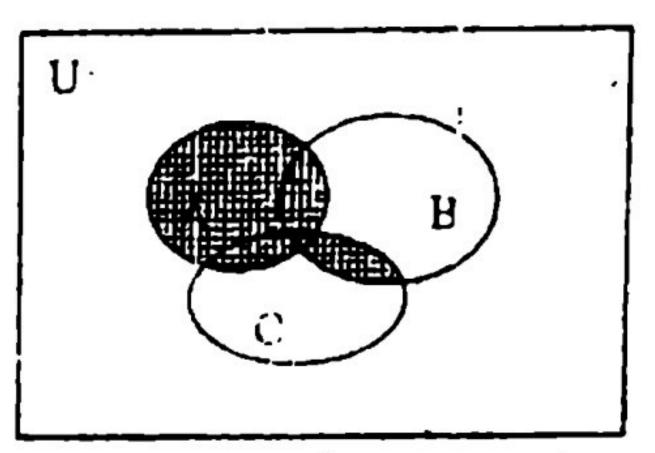


Fig. 4: $(A \cup B) \cap (A \cup C)$ is shown by double crossing line segments in Fig. 4.

Regions shown in Fig. 1 and Fig. 4 are equal.

Thus $A \cup (B \cap C) = (A \cup B') \cap (A \cup C)$

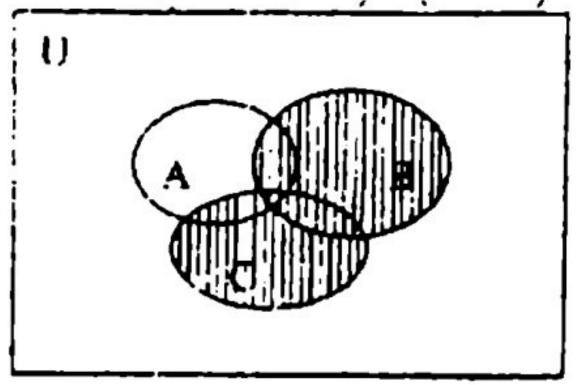


Fig. 5:B ∪ C is shown by vertical line segments in Fig. 5.

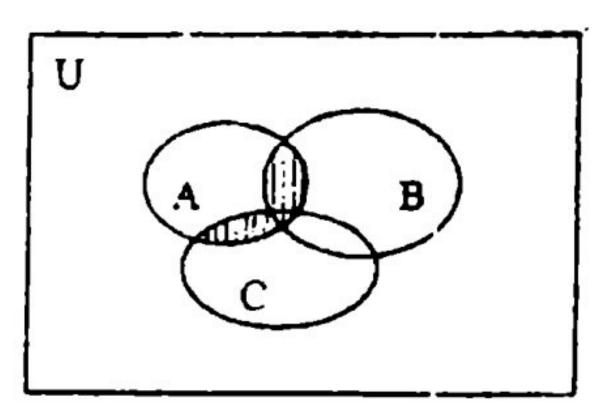


Fig. 6: $A \cap (B \cup C)$ is shown in Fig. 6 by vertical line segments.

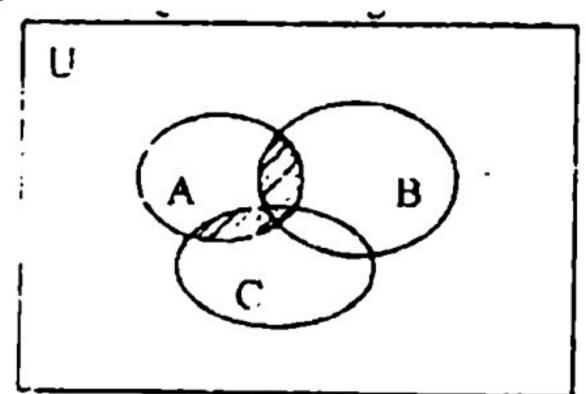


Fig. 7: $(A \cap B) \cup (A \cap C)$ is shown in Fig. 7 by slanting line segments.

Regions displayed in Fig. 6 and Fig, 7 are equal.

Thus $A \cap (A \cup C) = (A \cap B) \cup (A \cap C)$

SOLVED EXERCISE 5.3

1. If
$$U = \{1, 2, 3, 4, ..., 10\}$$

 $A = \{1, 3, 5, 7, 9\}$
 $B = \{1, 4, 7, 10\}$ then verify the following questions,

(i)
$$A - B = A \cap B'$$

L.H.S. = $A - B$
= $\{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}$
= $\{3, 5, 9\}$ _____(i)
R.H.S. = $A \cap B'$