SOLVED EXERCISE 9.1

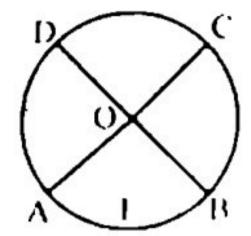
1. Prove that, only the diameters of a circle are the intersecting chords which bisect each other.

Given: A circle having diameters AC and

BD which passes through centre O.

To Prove: Diameters AC and BD bisect

each other.



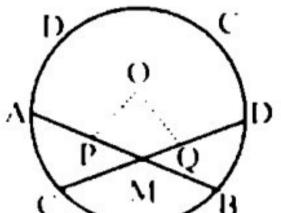
Proof:

Statements .		Reasons	
$\overline{OA} \cong \overline{OC}$	(i)	C	
Similarly m $\overrightarrow{OC} \cong \overrightarrow{OD}$	(ii)	Common	
$m\overline{OA} = m\overline{OD}$	(iii)		
From (i), (ii) and (iii), we have		radii of the same circle	
$m\overline{OA} = m\overline{OB} = m\overline{OC} = 0$	OD		

Hence AC and BD are intersecting chords which bisect each other.

Two chords of a circle do not pass through the centre. Prove that they
cannot bisect each other,

A circle with centre O having two chords AB and CD



To Prove:

M is not the mid-point of chords AB and CD

Construction:

Join O to P and Q such that $\overrightarrow{OP} \perp \overrightarrow{AB}$ and $\overrightarrow{OQ} \perp \overrightarrow{CD}$

Proof:

Statements	Reasons	
O is the centre of the circle with OP \perp AB Thus OP \perp AB	Construction	
Now point M lies between P and B. Therefore M is not the midpoint of AB.		
Hence AB and CD cannot bisect each other.		

3. If the length of the chord AB = 8cm. Its distance from the centre is 3 cm, then measure the diameter of such circle.

Given:

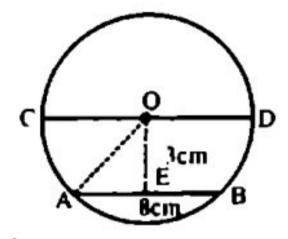
mAB = 8cm, mOE = 3cm

Required:

to find the length of diameter

i.e., mCD = ?

Construction: Join O to A and E.



Proof:

Statements	Reasons
In Δ AEO	$m\overline{AO} = m\overline{OC} = m\overline{OD} = 5cm$
$(AO)^2 = \overline{AE}^2 + \overline{EO}^2$	70 - 1070 M - 107 Nage 40 8000
$\left[1/\frac{1}{2}\right]^{2}$	$\Rightarrow \overline{CD} = \overline{CO} + \overline{mOD}$
$= \left[\frac{1}{2}\left(\overline{AB}\right)\right]^2 + \left(3\right)^2$	= 5cm + 5cm
ر ا ا	= 10cm
$= \left[\frac{1}{2} \times 8\right]^2 + 9$	Hence
$=(4)^2+9$	rience
= 16 + 9 = 25cm	Diameter = 10cm
$\Rightarrow \overline{AO} = \sqrt{25} = 45$ cm	

4. Calculate the length of a chord which stands at a distance 5cm from the centre of a circle whose radius is 9cm.

Given:

$$m\overline{OA} = m\overline{OB} = 8cm$$
.
 $m\overline{OD} = 5cm$

Required:

$$m\overline{AB} = ?$$

Proof:

Statements	Reasons
In Δ OAD.	
$m\overline{OA}^2 = m\overline{OD}^2 + m\overline{AD}^2$	
$m\overline{OA}^2 - m\overline{OD}^2 = m\overline{AD}^2$	$\therefore AD = \frac{1}{2} \overline{AB}$
$9^2 - 5^2 = \left[\frac{1}{2} m \left(\overline{AB}\right)\right]^2$	
$\left[\frac{1}{2}m\left(\overline{AB}\right)\right]^2 = 81 - 25$	
$\frac{1}{4}m\left(\overline{AB}\right)^2 = 56$	
$\Rightarrow m\overline{AB}^2 = 56 \times 4 = 224$	

THEOREM 4

9.1 (iv) If two chords of a circle are congruent then they will be equidistant from the centre.

Given:

AB and CD are two equal chords of a circle with centre at O.

So that $\overrightarrow{OH} \perp \overrightarrow{AB}$ and $\overrightarrow{UK} \perp \overrightarrow{CD}$.

 $AB = \sqrt{224} 14.97 \text{cm}$

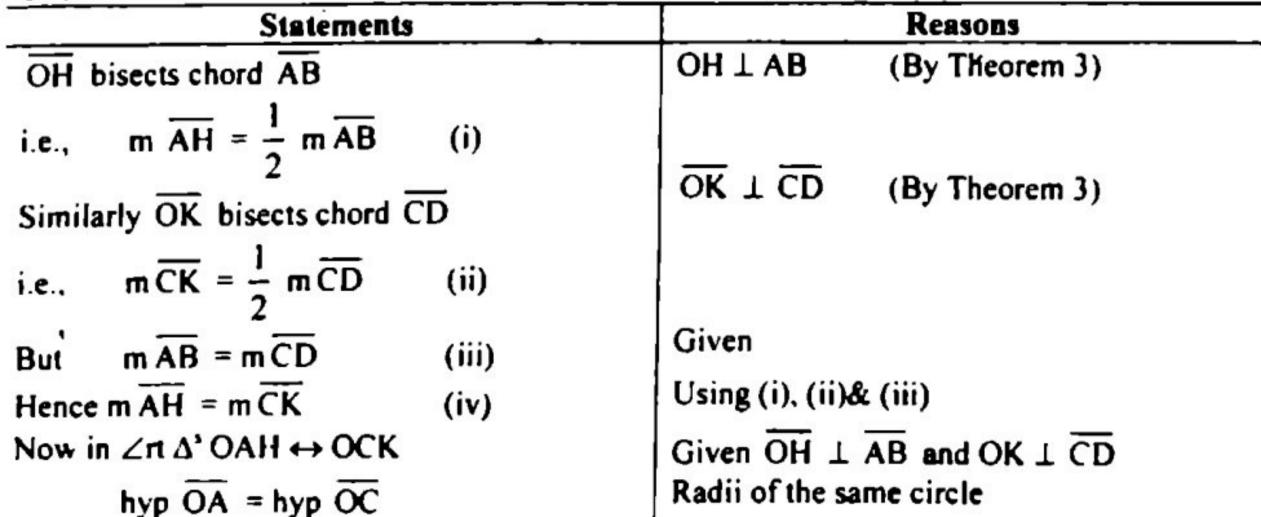
To prove:

 $m \overline{OH} = m \overline{OK}$

Construction:

Join O with A and O with C So that we have \angle rt Δ ⁵ OAH and OCX.

Proof:



D

$$m \overline{AH} = m \overline{CK}$$
ΔΟΛΗ ≅ Δ ΟCK
 $\Rightarrow m \overline{OH} = m \overline{OK}$

Already proved in (iv)
H. S postulate

THEOREM 5

9.1 (v) Two chords of a circle which are equidistant from the centre, are congruent.

Given:

 \overline{AB} and \overline{CD} are two chords of a circle with centre at O. $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$, so that m $\overline{UH} = m \overline{OK}$

To prove:

 $m\overline{AB} = m\overline{CD}$

Construction:

Join A and C with O. So that we can form $\angle rt \Delta^s$ OAH and OCK.

Proof:

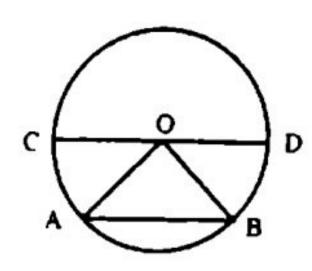
Statements	Reasons	8 E 81
In ∠rt ∆' OAH ↔ OCK.		
hyp \overline{OA} = hyp \overline{OC} m \overline{OH} = m \overline{OK}	Radii of the same circle. Given H.S Postulate	
So $\overline{AH} \cong \Delta OCK$ So $\overline{AH} = mCK$ But $\overline{AH} = \frac{1}{2} m \overline{AB}$ Similarly $m\overline{CK} = \frac{1}{2} m\overline{CD}$	(ii) OH 1 chord AB (Given) (iii) OK ± chord CD (Given)	
Since $m \overline{AH} = m \overline{CK}$ $\frac{1}{2} m \overline{AB} = m \overline{CD}$ or $m \overline{AB} = m \overline{CD}$	Already proved in (i) Using (ii)& (iii)	

Example:

Prove that the largest chord in a circle is the diameter.

Given:

AB is a chord and CD is the diameter of a circle with centre point O.



To prove:

If \overline{AB} and \overline{CD} are distinct, then $\overline{mCD} = \overline{mAB}$.

Construction:

Join O with A and 0 with B then form a AOAB.

Proof:

Sum of two sides of a triangle is greater than its third side.

$$\ln \Delta OAS \Rightarrow m \overline{OA} + m \overline{OB} > m \overline{AB}$$
 ... (i)

But \overline{OA} and \overline{OB} are the radii of the same circle with centre O.

So that
$$m \overrightarrow{OA} + m \overrightarrow{OB} = m \overrightarrow{CD}$$
 ... (ii)

⇒ Diameter CD > chord AB using (i) & (ii).

Hence, diameter CD is greater than any other chord drawn in the circle.

SOLVED EXERCISE 9.2

1. Two equal chords of a circle intersect, show that the segments of the one are equal corresponding to the segments of the other.

In a circle with radius O, we

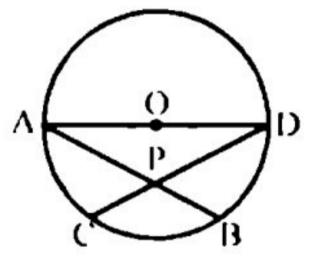
have

$$m\overline{AB} = m\overline{CD}$$

To Prove:

$$\overline{AB} = \overline{CD}$$

Join O to A and D



Proof:

Because \overline{AB} and \overline{CD} intersect each other, so m $\overline{AB} = \overline{AP} + \overline{BP}$

$$\overline{AP} = m\overline{CP}$$
 and $m\overline{PB} = m\overline{PP}$

So m $\overline{AB} = m \overline{CP}$

Hence proved