$$= \frac{x+1}{x-1} \neq \pm f(x)$$

$$\therefore \quad f(x) \text{ is neither even nor odd function.}$$

(v)
$$f(x) = x^{2/3} + 6$$

$$f(-x) = (-x)^{2/3} + 6$$

$$= [(-x)^2]^{1/3} + 6$$

$$= (x^2)^{1/3} + 6$$

$$= x^{2/3} + 6$$

$$= f(x)$$

$$\therefore \quad f(x) \text{ is an even function.}$$

(vi)
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

 $f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 - 1}$
 $= \frac{-x^3 + x}{x^2 + 1}$
 $= \frac{-(x^3 - x)}{x^2 - 1}$
 $= -f(x)$

 \therefore f(x) is an odd function.

Composition of Functions:

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

(gof)(x) = g(f(x)) = gf(x) for all $x \in X$

Inverse of a Function:

Let f be one-one function from X onto Y. The inverse function of f, denoted by f^{-1} , is a function from Y onto X and is defined by.

$$x = f^{-1}(y)$$
, $\forall y \in Y$ if and only if $y = f(x)$, $\forall x \in X$

Q.1 The real valued functions f and g are defined below. Find (a) fog (x) (b) gof (x) (c) fof (x) (d) gog (x) (i) f(x) = 2x + 1; $g(x) = \frac{3}{x-1}$, $x \neq 1$

	1			
(ii)	$f(x) = \sqrt{x+1}$; $g(x) = \frac{1}{x^2}$, $x \neq 0$			
(iii)	$f(x) = \frac{1}{\sqrt{x-1}}$; $x \neq 1$; $g(x) = (x^2+1)^2$			
(iv)	$f(x) = 3x^4 - 2x^2$; $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$			
Solution:				
(i)	$f(x) = 2x + 1$; $g(x) = \frac{3}{x-1}$, $x \neq 1$			
(a)	fog(x) = f(g(x))			
	$= f\left(\frac{3}{x-1}\right)$ $= 2\left(\frac{3}{x-1}\right) + 1$ $= \frac{6}{x-1} + 1$ $= \frac{6+x-1}{x-1}$ $= \frac{x+5}{x-1}$ Ans.			
(b)	gof(x) = g(f(x))			
(c)	= g(2x + 1) = $\frac{3}{2x + 1 - 1} = \frac{3}{2x}$ Ans. fof(x) = f(f(x)) = f(2x + 1) = 2(2x + 1) + 1			

20

$$= 4x + 2 + 1$$

$$= 4x + 3$$
 Ans.
(d) $gog(x) = g(g(x))$

$$= g\left(\frac{3}{x-1}\right)$$

$$= \frac{3}{\frac{3}{x-1} - 1}$$

Mathematics (Part-II)

$$= \frac{3}{\frac{3 - (x - 1)}{x - 1}}$$

$$= \frac{3(x - 1)}{3 - x - 1}$$

$$= \frac{3(x - 1)}{4 - x} \quad \text{Ans.}$$
(ii) $\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x} + \mathbf{1}}$; $\mathbf{g}(\mathbf{x}) = \frac{1}{\mathbf{x}^2}$, $\mathbf{x} \neq \mathbf{0}$
(a) $\mathbf{fog}(\mathbf{x}) = \mathbf{f}(\mathbf{g}(\mathbf{x}))$
 $= \mathbf{f}(\frac{1}{\mathbf{x}^2})$
 $= \sqrt{\frac{1 + \mathbf{x}^2}{x^2}} = \frac{\sqrt{1 + \mathbf{x}^2}}{x} \quad \text{Ans.}$
(b) $\mathbf{gof}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$
 $= \mathbf{g}(\sqrt{x + 1})$
 $= \frac{1}{(\sqrt{x + 1})^2} = \frac{1}{x + 1} \quad \text{Ans.}$
(c) $\mathbf{fof}(\mathbf{x}) = \mathbf{f}(\mathbf{f}(\mathbf{x}))$
 $= \mathbf{f}(\sqrt{x + 1} + 1) \quad \text{Ans.}$
(d) $\mathbf{gog}(\mathbf{x}) = \mathbf{g}(\mathbf{g}(\mathbf{x}))$
 $= \mathbf{g}(\frac{1}{\mathbf{x}^2})$

$$= \frac{1}{\sqrt{x^4 + 1 + 2x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2(x^2 + 2)}} = \frac{1}{x\sqrt{x^2 + 2}} \quad \text{Ans.}$$
(b) $\operatorname{gof}(x) = g(f(x))$

$$= g\left(\frac{1}{\sqrt{x - 1}}\right)$$

$$= \left[\left(\frac{1}{\sqrt{x - 1}}\right)^2 + 1\right]^2$$

$$= \left(\frac{1}{x - 1} + 1\right)^2 = \left(\frac{1 + x - 1}{x - 1}\right)^2$$

$$= \left(\frac{x}{x - 1}\right)^2 \quad \text{Ans.}$$
(c) $\operatorname{fof}(x) = f(f(x))$

$$= f\left(\frac{1}{\sqrt{x - 1}}\right)$$

$$= \frac{1}{\sqrt{\sqrt{1 - 1}}}$$

$$= \frac{1}{\sqrt{\sqrt{1 - 1}}} = \sqrt{\frac{\sqrt{x - 1}}{1 - \sqrt{x - 1}}} \quad \text{Ans.}$$
(d) $\operatorname{gog}(x) = g(g(x))$

$$= g((x^2 + 1)^2)^2 + 1]^2$$

$$= [(x^2 + 1)^2 + 1]^2 \quad \text{Ans.}$$

22

(iv)
$$f(x) = 3x^4 - 2x^2$$
; $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$
(a) $fog(x) = f(g(x))$
 $= f\left(\frac{2}{\sqrt{x}}\right)$
 $= 3\left(\frac{2}{\sqrt{x}}\right)^4 - 2\left(\frac{2}{\sqrt{x}}\right)^2$

Ans.

$$= 3\left(\frac{16}{x^{2}}\right) - 2\left(\frac{4}{x}\right)$$

$$= \frac{48}{x^{2}} - \frac{8}{x}$$

$$= \frac{48 - 8x}{x^{2}}$$

$$= \frac{8(6 - x)}{x^{2}} \quad \text{Ans.}$$
(b) $\text{gof}(x) = g(f(x))$

$$= g(3x^{4} - 2x^{2})$$

$$= \frac{2}{\sqrt{3x^{4} - 2x^{2}}}$$

$$= \frac{2}{\sqrt{x^{2}(3x^{2} - 2)}} = \frac{2}{x\sqrt{3x^{2} - 2}} \quad \text{Ans.}$$
(c) $\text{fof}(x) = f(f(x))$

$$= f(f(x))$$

$$= f(3x^{4} - 2x^{2})$$

$$= 3(3x^{4} - 2x^{2})^{4} - 2(3x^{4} - 2x^{2})^{2} \quad \text{Ans.}$$
(d) $\text{gog}(x) = g(g(x))$

$$= g\left(\frac{2}{\sqrt{x}}\right)$$

$$= 2\sqrt{\sqrt{x}}$$

$$= 2\sqrt{\sqrt{x}}$$

$$= 2\sqrt{\sqrt{x}}$$

$$= \sqrt{2\sqrt{x}}$$
 Ans.

Q.2 For the real valued function, f defined below, find:
(a) f⁻¹(x)

(b)
$$f^{-1}(-1)$$
 and verify $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
(i) $f(x) = -2x + 8$ (Lahore Board 2007,2009) (ii) $f(x) = 3x^3 + 7$
(iii) $f(x) = (-x + 9)^3$ (iv) $f(x) = \frac{2x + 1}{x - 1}$, $x > 1$

Solution:

(i)
$$f(x) = -2x + 8$$

(a) Since $y = f(x)$
 $\Rightarrow x = f^{-1}(y)$
Now,
 $f(x) = -2x + 8$
 $y = -2x + 8$
 $2x = 8 - y$
 $x = \frac{8 - y}{2}$
 $f^{-1}(y) = \frac{8 - x}{2}$
Replacing y by x
 $f^{-1}(x) = \frac{8 - x}{2}$
Replacing y by x.
 $f^{-1}(x) = \frac{8 - x}{2}$
(b) Put, $x = -1$
 $f^{-1}(-1) = \frac{8 - (-1)}{2} = \frac{8 + 1}{2} = \frac{9}{2}$
 $f(f^{-1}(x)) = f(\frac{8 - x}{2})$
 $= -2(\frac{8 - x}{2}) + 8$
 $= -8 + x + 8$
 $= x$
 $f^{-1}(f(x)) = f^{-1}(-2x + 8)$
 $= \frac{8 - (-2x + 8)}{2}$
 $= \frac{8 + 2x - 8}{2}$
 $= \frac{2x}{2} = x$
 $f(f^{-1}(x)) = f^{-1}(f(x)) = x$ Hence proved.

(ii)	f(x)	=	$3x^3 + 7$
(a)	Since	у	= f(x)
	=>	х	$= f^{-1}(y)$
	Now		
	f(x)	=	$3x^3 + 7$
	У	=	$3x^3 + 7$
	$3x^3$	=	y – 7
	x ³	=	$\frac{y-7}{3}$
	х	=	$\left(\frac{y-7}{3}\right)^{\frac{1}{\beta}}$
	f ⁻¹ (y)	=	$\left(\frac{y-7}{3}\right)^{\frac{1}{3}}$

Replacing y by x

$$f^{-1}(x) = \left(\frac{x-7}{3}\right)^{\frac{1}{3}}$$

(b) Put $x = -1$
 $f^{-1}(-1) = \left(\frac{-1-7}{3}\right)^{\frac{1}{3}}$
 $= \left(\frac{-8}{3}\right)^{\frac{1}{3}}$
 $f\left(f^{-1}(x)\right) = f\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}}$
 $= 3\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{3}{3}} + 7$
 $= 3\left(\frac{x-7}{3}\right) + 7$
 $= x-7+7 = x$
 $f^{-1}(f(x)) = f^{-1}(3x^{3}+7)$
 $= \left(\frac{3x^{3}+7-7}{3}\right)^{\frac{1}{3}}$

$$= \left(\frac{3x^{3}}{3}\right)^{\frac{1}{3}} = x$$

$$= (x^{3})^{\frac{1}{3}} = x$$

f (f⁻¹(x)) = f⁻¹ (f(x)) = x Hence proved.
(iii) f(x) = (-x + 9)^{3}
(a) Since y = f(x)
x = f⁻¹(y)
Now
f(x) = (-x + 9)^{3}
y = (-x + 9)^{3}
y^{\frac{1}{3}} = -x + 9
x = 9 - y^{\frac{1}{3}}
Replacing y by x
f⁻¹(x) = 9 - x^{\frac{1}{3}}
(b) Put x = -1
f⁻¹(-1) = 9 - (-1)^{\frac{1}{3}}
f(f⁻¹(x)) = f(9 - x^{\frac{1}{3}})
= [-(9 - x^{\frac{1}{3}}) + 9]^{3}
= (-9 + x^{\frac{1}{3}} + 9)^{3}
= (-9 + x^{\frac{1}{3}} + 9)^{3}
= (x^{\frac{1}{3}})^{3} = x
f⁻¹(f(x)) = f⁻¹((-x + 9)^{3})^{\frac{1}{3}}
= 9 - [(-x + 9)^{\frac{1}{3}}^{\frac{1}{3}}
= 9 - (-x + 9)
= 9 + x - 9
= x
f (f⁻¹(x)) = f⁻¹(f(x)) = x Hence proved.

(iv)
$$f(x) = \frac{2x+1}{x-1}$$
, $x > 1$
(a) Since $y = f(x)$
 $x = f^{-1}(y)$

Now

$$f(x) = \frac{2x+1}{x-1}$$

$$y = \frac{2x+1}{x-1}$$

$$y(x-1) = 2x+1$$

$$yx-y = 2x+1$$

$$yx-2x = 1+y$$

$$x(y-2) = y+1$$

$$x = \frac{y+1}{y-2}$$

$$f^{-1}(y) = \frac{y+1}{y-2}$$

Replacing y by x

$$f^{-1}(x) = \frac{x+1}{x-2}$$
(b) Put $x = -1$
 $f^{-1}(-1) = \frac{-1+1}{-1-2}$
 $= \frac{0}{-3} = 0$
 $f(f^{-1}(x)) = f(\frac{x+1}{x-2})$
 $2(\frac{x+1}{x-2})+1$

$$= \frac{2(\frac{x-2}{x-2})^{+1}}{\frac{x+1}{x-2} - 1}$$
$$= \frac{\frac{2(x+1) + (x-2)}{x-2}}{\frac{x+1 - (x-2)}{x-2}}$$

$$= \frac{2x + 2 + x - 2}{x + 1 - x + 2}$$

$$= \frac{3x}{3} = x$$

$$f^{-1}(f(x)) = f^{-1}(\frac{2x + 1}{x - 1})$$

$$= \frac{\frac{2x + 1}{x - 1} + 1}{\frac{2x + 1}{x - 1} - 2}$$

$$= \frac{\frac{2x + 1 + x - 1}{x - 1}}{\frac{2x + 1 - 2(x - 1)}{x - 1}}$$

$$= \frac{3x}{2x + 1 - 2x + 2}$$

$$= \frac{3x}{3} = x$$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$
 Hence proved.

Q.3 Without finding the inverse, state the domain and range of f⁻¹.

(i)
$$f(x) = \sqrt{x+2}$$
 (ii) $f(x) = \frac{x-1}{x-4}, x \neq 4$
(iii) $f(x) = \frac{1}{x+3}, x \neq -3$ (iv) $f(x) = (x-5)^2, x \geq 5$

Solution:

(i)
$$f(x) = \sqrt{x+2}$$

Domain of $f(x) = [-2, +\infty)$
Range of $f(x) = [0, +\infty)$

Domain of $f^{-1}(x) = Range \text{ of } f(x) = [0, +\infty)$ Range of $f^{-1}(x) = Domain \text{ of } f(x) = [-2, +\infty)$ (ii) $f(x) = \frac{x-1}{x-4}, x \neq 4$ Domain of $f(x) = R - \{4\}$ Range of $f(x) = R - \{1\}$ Domain of $f^{-1}(x) = Range \text{ of } f(x) = R - \{1\}$ Range of $f^{-1}(x) = Domain \text{ of } f(x) = R - \{4\}$

(iii)
$$f(x) = \frac{1}{x+3}, x \neq -3$$

Domain of $f(x) = R - \{-3\}$
Range of $f(x) = R - \{0\}$
Domain of $f^{-1}(x) = Range of f(x) = R - \{0\}$
Range of $f^{-1}(x) = Domain of f(x) = R - \{-3\}$
(iv) $f(x) = (x-5)^2, x \geq 5$ (Gujranwala Board 2007)
Domain of $f(x) = [5, +\infty)$
Range of $f(x) = [0, +\infty)$
Domain of $f^{-1}(x) = Range of f(x) = [0, +\infty)$
Range of $f^{-1}(x) = Domain of f(x) = [5, +\infty)$

Limit of a Function:

Let a function f(x) be defined in an open interval near the number 'a' (need not at a) if, as x approaches 'a' from both left and right side of 'a', f(x) approaches a specific number 'L' then 'L', is called the limit of f(x) as x approaches a symbolically it is written as.

> Lim f(x) = L read as "Limit of f(x) as $x \to a$, is L" $x \rightarrow a$

Theorems on Limits of Functions:

Let f and g be two functions, for which Lim f(x) = L and Lim g(x) = M, then

- **Theorem 1:** The limit of the sum of two functions is equal to the sum of their limits. $\lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ $x \rightarrow a$ = L + M
- The limit of the difference of two functions is equal to the difference of Theorem 2: their limits.

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
$$= L - M$$

29

- **Theorem 3:** If K is any real numbers, then. Lim [kf(x)]= K Lim f(x) = kL Theorem 4: The limit of the product of the functions is equal to the product of their limits.
- $\lim_{x \to a} [f(x) \cdot g(x)] = [\lim_{x \to a} f(x)] [\lim_{x \to a} g(x)] = LM$ The limit of the quotient of the functions is equal to the quotient of their Theorem 5:
 - limits provided the limit of the denominator is non-zero.

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \quad , \quad g(x) \neq 0, \ M \neq 0$$

Theorem 6: Limit of $[f(x)]^n$, where n is an integer. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n = L^n$

The Sandwitch Theorem:

Let f, g and h be functions such that $f(x) \le g(x) \le h(x)$ for all number x in some open interval containing "C", except possibly at C itself.

If, $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} h(x) = L$, then $\lim_{x\to c} g(x) = L$

Prove that

If $\boldsymbol{\theta}$ is measured in radian, then

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Proof:

Take θ a positive acute central angle of a circle with radius r = 1. OAB represents the sector of the circle.

From right angle $\triangle ODC$

$$\operatorname{Sin}\theta = \frac{|\mathrm{DC}|}{|\mathrm{OC}|} = |\mathrm{DC}| \quad (\therefore |\mathrm{OC}| = 1)$$

From right angle ΔOAB

$$\operatorname{Tan}\theta = \frac{|AB|}{|OA|} = AB \quad (\therefore |OA| = 1)$$

In terms of θ , the areas are expressed as

Area of
$$\triangle OAC = \frac{1}{2} |OA| |CD| = \frac{1}{2} (1) \sin \theta = \frac{1}{2} \sin \theta$$

Area of sector OAC =
$$\frac{1}{2} r^2 \theta = \frac{1}{2} (1)(\theta) = \frac{1}{2} \theta$$

Area of $\Delta OAB = \frac{1}{2} |OA| |AB| = \frac{1}{2} (1) \tan \theta = \frac{1}{2} \tan \theta$
From figure
Area of $\Delta OAB > \text{Area of sector OAC} > \text{Area of } \Delta OAC$
 $\frac{1}{2} \tan \theta > \frac{1}{2} \theta > \frac{1}{2} \sin \theta$
 $\frac{1}{2} \frac{\sin \theta}{\cos \theta} > \frac{\theta}{2} > \frac{\sin \theta}{2}$

As $\sin\theta$ is positive, so on division by $\frac{1}{2}\sin\theta$, we get.

$$\frac{1}{\cos\theta} > \frac{\theta}{\sin\theta} > 1$$
 ($0 < \theta < \pi/2$)

i.e.

$$\cos\theta < \frac{\sin\theta}{\theta} < 1$$

When, $\theta \to 0$, $\cos \theta \to 1$

Since $\frac{\sin\theta}{\theta}$ is sandwitched between 1 and a quantity approaching 1 itself.

So by the sandwitch theorem it must also approach 1.

i.e.

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Theorem: Prove that

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Proof:

Taking

$$\left(1 + \frac{1}{n}\right)^{n} = 1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^{3} + \dots + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{2!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{$$

Taking $\lim_{n \to +\infty}$ on both sides.

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$$
$$= 1 + 1 + 0.5 + 0.166667 + 0.0416667 + \dots$$

As approximate value of e is = 2.718281

$$\therefore \lim_{n \to -\infty} \left(1 + \frac{1}{n} \right)^2 = e$$

Deduction:

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

We know that.

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$
Put $x = \frac{1}{n}$ then $\frac{1}{x} = n$
As $n \to +\infty$, $x \to 0$

$$\therefore \lim_{n \to -\infty} (1 + x)^{1/x} = e$$

Theorem:

Prove that:

$$\lim_{x \to a} \frac{a^x - 1}{x} = \log_e a$$

Proof:

Taking,

Lim
$$\frac{a^{x}-1}{x}$$

Let $a^{x}-1 = y$
 $a^{x} = 1 + y$
 $x = \log_{a}(1 + y)$
As, $x \rightarrow a$, $y \rightarrow 0$

Deduction

$$\lim_{x \to 0} \left(\frac{e^{x} - 1}{x}\right) = \log_{e} e = 1$$

We know that

$$\lim_{\substack{x \to 0 \\ x \to 0}} \left(\frac{a^{x}-1}{x}\right) = \log_{e}a$$
Put $a = e$

$$\lim_{x \to 0} \left(\frac{e^{x}-1}{x}\right) = \log_{e}e =$$

Important results to remember

(i)
$$\lim_{x \to \pm \infty} (e^x) = \infty$$
 (ii) $\lim_{x \to -\infty} (e^x) = \lim_{x \to -\infty} \left(\frac{1}{e^{-x}}\right) = 0$
(iii) $\lim_{x \to \pm \infty} \left(\frac{a}{x}\right) = 0$, where a is any real number.
EXERCISE 1.3

1

Q.1 Evaluate each limit by using theorems of limits.

(i)
$$\lim_{x \to 3} (2x + 4)$$
 (ii) $\lim_{x \to 1} (3x^2 - 2x + 4)$
(iii) $\lim_{x \to 3} \sqrt{x^2 + x + 4}$ (iv) $\lim_{x \to 2} x\sqrt{x^2 - 4}$
(v) $\lim_{x \to 2} (\sqrt{x^3 + 1} - \sqrt{x^2 + 5})$ (iv) $\lim_{x \to 2} \frac{2x^3 + 5x}{3x - 2}$

Solution:

(i)
$$\lim_{x \to 3} (2x + 4) = \lim_{x \to 3} (2x) + \lim_{x \to 3} (4)$$

 $= 2 \lim_{x \to 3} x + 4$
 $= 2(3) + 4 = 6 + 4 = 10$ Ans.
(ii) $\lim_{x \to 1} (3x^2 - 2x + 4) = \lim_{x \to 1} (3x^2) - \lim_{x \to 1} (2x) + \lim_{x \to 1} (4)$
 $= 3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x - 4$
 $= 3(1)^2 - 2(1) + 4$
 $= 3 - 2 + 4$
 $= 5$ Ans.
(iii) $\lim_{x \to 3} \sqrt{x^2 + x + 4} = [\lim_{x \to 3} (x^2 + x + 4)]^{1/2}$